
(T01) Daksha Mission [10 marks]

“Daksha” is a proposed Indian mission consisting of two satellites  and  orbiting the Earth in the same circular
orbit of radius  7000 km but with 180° phase difference. These satellites observe the universe in high energy
domain (X-rays and -rays). Each of the satellites of Daksha uses several flat, rectangular detectors.

To understand how to localize a source in the sky, we shall use a simplified model of the Daksha mission. Assume
that  has only two identical detectors  and , each of area  0.50 m2, attached to an opaque mount M as
shown in the figure below. The detectors lie symmetrically around the -axis in planes perpendicular to the -
plane and make an angle  120° with each other.

(T01.1) When observing a distant source located in the -  plane, detector  records a power 
2.70 × 10−10 J s−1 and detector  records a power  4.70 × 10−10 J s−1 due to different incident
angle.

 

  Estimate the angle  made by the position vector of the source with the positive -axis, with
counter-clockwise angle from the positive -axis  being considered positive.

[5]

Consider a single pulse from a distant source (not necessarily in the -  plane) recorded by both satellites (  and 
) of Daksha. The times of the peaks of the pulses recorded by  and  are  and , respectively.

(T01.2) If  was measured to be 10.0 ± 0.1 ms then determine the fraction, , of the celestial sphere
where the source might lie.

[5]

(T02) Makar-Sankranti [10 marks]

A festival named "Makar-Sankranti", meaning Makar = Capricorn and Sankranti = Entry, is celebrated in India
and marks the Sun enterance to the zodiacal region of Capricorn as seen from the Earth. This event is currently
celebrated around 14 January. However, many years ago this event coincided with the Winter Solstice in the
northern hemisphere which we assume to take place on 21 December. 

[Το φεστιβάλ γιορτάζεται γύρω στις 14 Ιανουαρίου, άλλα λόγω της μικρής μεταβολής στην είσοδο του Ήλιου στον
Αιγόκερω, κάποτε συνέπιπτε και με την 21 Δεκεμβρίου και το Χειμερινό Ηλιοστάσιο]

(T02.1) Based on the information above, find the year, , when the celebration of this festival last
coincided with the Winter Solstice in the Northern hemisphere.

[3]

(T02.2) If the Sun appeared to enter the zodiacal region of Capricorn at exact local time of 11:50:13 hrs on
14 January 2006 in Mumbai, calculate the date, , and local time, , of its entry in
Capricorn in the year 2013.

[3]
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(T02.3) Makar-Sankranti festival is celebrated at a given place on the day of the first sunset in the zodiacal
region of Capricorn. You may assume that the local sunset time for Mumbai in January is 18:30:00
hrs. 

[Το φεστιβάλ εορτάζεται την μέρα του πρώτου Ηλιοβασιλέματος (δύση), νοούμενου ότι ο Ήλιος είναι ήδη
στον Αιγόκερω πριν το ηλιοβασίλεμα]

 

  Indicate the date of celebration of the festival on every year between 2006 and 2013 (by ticking ( )
the respective box in the table given in the Summary Answersheet).

[4]

(T03) Gravitational Waves [15 marks]

Orbiting binary black holes generate gravitational waves. Consider two black holes, in our Galaxy with masses
  and   , revolving in circular orbits with orbital angular frequency  around their centre of

mass.

(T03.1) Assuming Newtonian gravity, derive an expression for the angular frequency, , in terms of only 
, , and physical constants, for the black hole orbits at a time , when the separation between

them was 4.0 times the sum of their Schwarzschild radii.

 

  Calculate the value of  (in rad s−1). [5]

(T03.2) In general relativity, black holes in orbit emit gravitational waves with frequency , such that 
. This shrinks the black hole orbits, which in turn increases . The rate of

change of  is:

where  is called the “chirp mass”.

 

  Find the values of ,  and . [4]

(T03.3) Assume that the gravitational waves associated with the event were first detected at time . [6]

  Derive an expression for the observed time of black hole merger, , when  becomes very
large, in terms of , , and physical constants only.

Calculate the value of  (in seconds).

 

(T04) Balmer Decrement [15 marks]

Consider a main sequence star surrounded by a nebula.  The observed V-band magnitude of the star is 11.315 mag.
The ionised region of nebula close to the star emits  and  lines; their wavelengths are 0.6563 μm and 0.4861
μm, respectively.

The theoretically predicted ratio of fluxes in   to    lines is . However, when this radiation
passes through the outer portion of the cold dusty nebula, the observed emission fluxes of  and  lines are
6.80 × 10−15 W m−2 and 1.06 × 10−15 W m−2, respectively.

The extinction  is a function of wavelength and is expressed as:
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Here,  is the extinction curve and  denotes the colour excess in the filter bands B and V. The
extinction curve (with  in μm) is given as follows.

where,  is the ratio of total-to-selective extinction.

(T04.1) Find the values of  and . [3]

(T04.2)
Find the value of the ratio of colour excess .

[4]

(T04.3) Estimate the extinction due to nebula,  and , at    and   wavelengths, respectively. [6]

(T04.4) Estimate the extinction of the nebula ( ) and the apparent magnitude of the star in the V band, 
, in the absence of the nebula.

[2]

(T05) Quasars [20 marks]

A quasar is an extremely luminous active galaxy powered by a supermassive black hole that emits relativistic jets.
The figure shows a series of panels of radio images of a quasar (with redshift , and luminosity distance 

 1.00 × 1010 ly) at different times. The “core” aligns with the vertical white line, while a jet, consisting of a
“blob” (marked white ), moves away from it over time. Each panel shows the observation time (starting with 
for the first image), and the angular scale is indicated at the top and bottom of the figure.
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(T05.1) Determine the blob’s angular separation,  (in milliarcsecond), and its transverse distance, 
 (in light-year), from the quasar core for each observation.

Then, calculate the blob’s apparent velocity in the transverse direction ( ) as a fraction of light
speed,   (  /c) by using consecutive observations.

Finally, calculate the average apparent velocity   over the entire observation period.

[5]

The quasar jet actually moves at a relativistic speed , but not necessarily in the plane of the sky; e.g., it
makes an angle  (the “viewing angle”) with respect to the line of sight of a distant observer (indicated by the
dashed lines), as shown in the sketch below.
For this and all subsequent parts, ignore redshift of the quasar and any relativistic effects.
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(T05.2) The light emitted by the blob at two different times  (corresponding to position A) and 
(corresponding to position B) reaches the observer at  and , respectively. Thus the observed
time difference is .

 

  (T05.2a)
Find an expression for the ratio  in terms of  and .

[2]

  (T05.2b) Using this ratio, express  in terms of  and . [2]

(T05.3) Motion is called superluminal if the apparent speed exceeds that of light ( ), and
subluminal if it does not ( ).

 

  (T05.3a) For , plot a smooth curve of  as a function of  to mark the boundary between
subluminal and superluminal motions. Shade the superluminal region in the graph
with slanted lines ( ///).

[4]

  (T05.3b) Find the lowest true jet speed ( ) for the superluminal motion to occur and
also its corresponding orientation angle .

[2]

(T05.4) Find an expression for the maximum viewing angle, , for which a given value of  will be
possible.

[2]

The core of a quasar, its central compact object, exhibits variability in its emission due to internal processes
occurring within a causally connected region. The size (= radius) of this region is typically taken to be about five
times the Schwarzschild radius of the core.

(T05.5) The core of a certain quasar is found to vary on time scales of about 1 h. Obtain an upper limit, 
, on the mass of the central compact object, in units of solar mass.

[3]

(T06) Galactic Rotation [20 marks]

The rotation curve of our Galaxy is determined using line-of-sight velocity measurements of neutral hydrogen (HI)
clouds along various Galactic longitudes, observed through the 21 cm HI line. Consider an HI cloud with Galactic
longitude , located at a distance  from the Galactic Centre (GC) and a distance  from the Sun. Consider Sun to
be at a distance  8.5 kpc from the GC. Assume that both the Sun and the HI cloud are in circular orbits around
the GC in the Galactic plane, with angular velocities  and , and rotational velocities  and , respectively.

The line-of-sight velocity ( ) and transverse velocity ( ) components of the cloud, as observed from the Sun, can
be expressed as
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Seen from the North Galactic Pole, the Galactic rotation is clockwise. Throughout this problem, we shall take line-of-
sight velocity to be positive when receding and clouds will be treated as point objects.

(T06.1) In the graph provided on the Summary Answersheet, sketch  as a function of  from  to 
 for two lines of sight defined by (i)  45° and (ii)   135°. Label each of your

lines/curves with the value of . 

[Σχεδιάστε ποιοτικά, τα σημεία κάμπης και τομής με άξονες, για τις 2 κατευθύνσεις παρατήρησης]

[5]

(T06.2) The graph below shows the average radial (solid, red curve) and transverse (dashed, blue curve)
velocity components of stars at a distance of 100 pc from the Sun, plotted as a function of Galactic
longitude.

 

  Using the graph, estimate the Sun’s orbital period ( ) around the GC in mega-years (Myr). [3]

(T06.3) Jan Oort noted that in the solar neighbourhood ( ), the difference in angular velocities (
) will be small, and hence, derived the following first order approximation for the line-of-

sight and the transverse velocity components:

where  and  are known as Oort’s constants.

 

  Let us consider two cases:

(I) the actual observed rotation curve of the Galaxy, and

(II) the rotation curve is for a hypothetical scenario where the Galaxy is devoid of dark matter and
the whole mass of the Galaxy is assumed to be concentrated at its centre.

 

  (T06.3a) Derive expressions for the radial gradient of the rotational velocity at the location of the

Sun, , for the two cases.

[2]

  (T06.3b) Express  and  in terms of , , and the radial gradient of rotational velocity at the

location of the Sun, .

[8]

  (T06.3c) The ratio ( ) of Oort’s constants for the two given cases, (I) and (II), are defined as 
and , respectively. Determine  and .

[2]

(T07) Neutron Star Binary [20 marks]
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In a binary system involving a compact star, where the companion star does not overflow its Roche lobe, the
primary source of accretion for the compact star is the stellar wind from the companion star. This wind-fed accretion
is especially significant in systems that include an early-type star (such as an O or B star, indicated henceforth as an
OB star), alongside a compact object like a neutron star (NS) in a close orbit.

Consider such a NS-OB star binary system where a neutron star of mass  2.0   and radius  11 km
is orbiting in a circular orbit of radius  around the centre of the OB star with velocity  1.5 × 105 m s−1 (see
figure below). Throughout this problem the mass loss from the OB star is assumed to be spherically symmetric and

its rate is  1.0 × 10−4  . 

[Σε αυτό το σύστημα Αστέρα ΟΒ - Αστέρα Νετρονίων, θεωρούμε πως λόγω του ισχυρού αστρικού ανέμου από την
επιφάνεια του αστέρα ΟΒ, τροφοδοτεί με μάζα τον αστέρα νετρονίων. ]

(T07.1) The accretion radius, , is defined as the maximum distance from the NS at which the stellar
wind can be captured by the NS. If the stellar wind speed at the orbital distance of the NS is 
3.0 × 106 m s−1, find  for the above system in km using standard escape velocity calculation.

[3]

(T07.2) Assuming that all captured material is accreted by the NS, estimate the mass accretion rate, ,
from the stellar wind onto the NS in units of  if  0.5 au. Neglect the effects of radiation
pressure and finite cooling time of the accreting gas.

[3]

(T07.3) Now consider the situation where the stellar wind speed at the orbital distance  (near the NS)
becomes comparable with orbital speed of the NS. The mass accretion rate from the stellar wind
onto the NS in this case would be given by an expression of the form ,
where  is the mass ratio of the binary and  is the angle in the frame of the NS
between the wind velocity direction and radial direction away from the OB star. Obtain the
expression for  assuming .

[6]

(T07.4) Consider that the fully ionized material accretes radially and is hindered due to the strong magnetic

field  of the NS. This effect can be modelled as a pressure, given by . We shall assume that the

NS has a dipole magnetic field whose magnitude in the equatorial plane varies with the distance 
from the NS for  as

where  is the magnetic field at the equator of the NS. Assume that the axis of the magnetic dipole
aligns with the rotation axis of the NS.

 

  (T07.4a) Obtain the magnetic pressure, ,  in the equatorial plane in terms of , , ,
and other suitable constants.

[1]
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  (T07.4b) The maximum distance where the accretion flow is stopped by the magnetic field at the
equatorial plane is called the magnetospheric radius . This flow of matter will exert a
pressure due to the relative motion between incoming stellar wind and the NS. Obtain
an approximate expression for the critical magnetic field   for which  coincides
with  and calculate its value in Tesla. Magnetic effects are neglected for 
and consider .

[7]

(T08) Shadow of a black hole [20 marks]

The Event Horizon Telescope (EHT) has released an image of the supermassive black hole at the centre of the M87
galaxy as shown in the left panel of the figure below.

To understand some simple features of this image, we will consider a simplified model of a non-rotating, static,
spherically symmetric black hole of mass  6.5 × 109  surrounded by a massless, thin, planar accretion disk
of inner and outer radii,  and , respectively, where  is the Schwarzschild radius.
A face-on view sketch is shown in the right panel of the figure below (figure is not to scale).

We assume that the accretion disk is the only source of light to be considered. Every point on the disk emits light in
all directions. This light travels under the influence of the gravitational field of the black hole. The path of the light
rays is governed by two equations given below (which are similar to those of an object around the Sun):

where  is the radial coordinate,  is the azimuthal angle, and  and  are constants related
to the conserved energy and conserved angular momentum, respectively.

Here  is the magnitude of the radial velocity,  is the magnitude of the tangential velocity, and 

 is the angular velocity. We define the impact parameter  for a trajectory as . Time dilation
is neglected in this problem.

Another useful equation is obtained by differentiating the first equation:

(T08.1) Circular light trajectories can exist around the black hole. Find the radius, , and impact
parameter, , for such photon trajectories in terms of   and relevant constants.

[4]

(T08.2) Calculate the time, , taken for completing one full orbit of the circular light trajectory in
seconds.

[2]

(T08.3) The radial velocity equation given above (the first equation in this question) can be compared with

an equation of the form   for light trajectories. A schematic plot of  as a
function of  is given below.

 

Rm

B0, c Rm

Racc r > Rm
vw ≫ vorb

M = M⊙,
ainner = 6RSC aouter = 10RSC RSC

1

2
v2r +

L2

2r2
(1 − 2GM

c2r
) = E ; vϕ = r ω =

L

r

r ∈ (RSC,∞) ϕ ∈ [0, 2π) E L

vr ≡ dr/dt vϕ

ω ≡ dϕ/dt b b = L/√2E

dvr

dt
−

L2

r3
+
3GML2

c2r4
= 0

rph
bph M

Tph

v2r
2
+ Veff(r) = E Veff/L

2

r

Theory Examination
Page 8 of 20

Theory Examination -- CY_THR (CYP)



  (T08.3a) The plot indicates two special radii,  and . Obtain expressions for  and  in
terms of  and relevant constants.

[2]

  (T08.3b) A photon travelling inward from the accretion disk towards the black hole can still
escape out to infinity in some cases. Find the expression for the smallest value of the
turning point radius, , for such a photon, in terms of  and relevant constants. Find
the expression for the minimum value of the impact parameter, , for this photon.

[3]

(T08.4) A ray of light coming from a radius  from the centre of the system in the plane of the sky will
suffer strong bending due to the gravity of the black hole, and eventually reach an observer (denoted
by an eye) at a large distance  from the system, as shown below.

 

  To this observer, the ray would appear to have originated from a different point at a distance 
 from the black hole centre in the plane of the sky, where  is the impact parameter for that

photon trajectory. For points on the accretion disk at , one may assume the following
relation:

 

  For the distant observer, like ourselves, with a face-on view of the accretion disk, the image of the
system will appear to be circularly symmetric in the plane of the sky. Determine the outermost
apparent radius, , and the innermost apparent radius, , of the image in units of au.

[5]

(T08.5) Consider an isolated supermassive black hole of mass  6.5 × 109   without any accretion
disk. A brief strong burst of electromagnetic radiation occurs for 5 s at a point Z at a distance, say, 

 from the black hole as shown in the figure. The burst at point Z emits light in all
directions. An observer at a point far from the black hole (denoted by an eye in the figure below)
takes a long exposure image of the region around the black hole for 60 s.

 

    Choose the correct option for each of the statements below:  
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  (T08.5a) The number of possible paths for light to travel from Z to the observer is

(A) At most one  (B) Exactly one  (C) Exactly two  (D) Greater than two.

[2]

  (T08.5b) The number of images of the EM burst at Z that will be seen in the long exposure image
is

(A) At most one  (B) Exactly one  (C) Exactly two  (D) Greater than two.

[2]

(T09) Atmospheric Seeing [35 marks]

A telescope with an achromatic convex objective lens of diameter  15  cm and focal length  200  cm is
pointed to a star at the zenith.

(T09.1) Find the diameter (in m),  , of the image of a point source as produced by the objective lens at
its focal plane for green light (  550 nm), considering only the effects of diffraction.

[1]

The image of an astronomical source is also affected by the so-called “atmospheric seeing”.

The boundaries between the layers in the atmosphere as well as the refractive indices of the layers change
continuously due to turbulence, temperature variation and other factors. This leads to tiny changes in the position
of the image in the focal plane of the telescope, known as the “twinkling effect”. For rest of the problem, apart from
using the diffraction limited finite size of the image of the star (as used above), no interference effects will be
considered.

The left panel of the figure below shows a vertical cross-section of the atmosphere with multiple layers of different
refractive indices ( ). The right panel shows the zoomed in view of a thin vertical segment of the
atmosphere and the boundary between the two lowest atmospheric layers of refractive indices  and  (
). We consider only these two layers and their boundary for this problem. The diagrams are not to scale.

(T09.2) Let the boundary between the two layers be at a height  1 km directly above the telescope
objective,  with a tilt of  30° with respect to the horizontal plane. In all parts of this problem  is
taken to be positive in the anti-clockwise direction. For a monochromatic light source,  1.00027
and  =1.00026. Let the angular shift of the image at the focal plane of the telescope for a star at the
zenith be  .

 

  (T09.2a) Draw an appropriately labelled ray-diagram at the boundary showing  , ,  and . [2]

  (T09.2b) Find the expression for  in terms of  and . Use the small angle approximations: 
 and .

[2]

  (T09.2c) Calculate the displacement,  (in m), in the position of the image if  increases by 1%
(keeping  and  fixed).

[3]
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  (T09.2d) Calculate the displacement,  (in m), in the position of the image if  increases by
0.0001% (keeping  and  fixed).

[3]

(T09.3) For white light coming from a star at the zenith, choose which of the following most closely
describes the shape and colour of the image by ticking ( ) the appropriate box (only one) in the
Summary Answersheet. Note  increases from left to right in the figure.

[2]

    Image colour Image shape Left edge Right edge
A White Circular    
B White Elliptical    
C Coloured Circular Blue Red
D Coloured Circular Red Blue
E Coloured Elliptical Blue Red
F Coloured Elliptical Red Blue

 

For all remaining parts of this question we consider monochromatic green light with  550 nm. We model the
boundary between the layers as a set of infinite zigzag planes (running perpendicular to the plane of the page)
separated by  10 cm along -axis, with either  10° or 10°.

The figure below (not to scale) shows a cross-section of this model of the atmosphere of width  ( ). For
telescopes with large aperture this zigzag nature of the boundary results in formation of speckles in the focal plane.

(T09.4) Consider an atmosphere modelled as above.  

  (T09.4a) A section of the atmosphere with consecutive zigzag planes, with same parameters as
stated above, is shown in the diagram below (not to scale).
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    In this diagram, reproduced in the Summary Answersheet, draw the paths of the
incident light rays up to the plane where the telescope objective is placed, shown by the
gray dotted line.

 

    Mark the region(s), if any, by “X” in the diagram where no light rays will reach. [4]

  (T09.4b) Calculate the width  of such region(s). [3]

  (T09.4c) Find the largest diameter, , of the telescope objective with which it will be possible
to obtain a single image of a star, by appropriately choosing the location of the telescope
relative to the structure of the boundary.

[4]

(T09.5) Consider the case when the zigzag shape of the boundary is allowed in both  and  directions
(like a field of pyramids), and   100 cm (with  200 cm).

[6]

  Draw the qualitative pattern of the resulting speckles in the box given in the Summary Answersheet.  

(T09.6) For a turbulent atmosphere again consider the same parallelly running zigzag shape of the
boundary layer only along -direction, but now the angle between two planes are changing at a
uniform rate from 10° to 10° in 1.0  s. Assume that this leads to a uniform rate of shift of the
position of the image.

[5]

  Consider a telescope with  8 cm and  1 m. Estimate the longest exposure time  allowed
for its CCD camera so that one gets only a single image, and any possible deviation in its position
remains less than 1% of the diffraction limited diameter of the image.

 

(T10) Big Bang Nucleosynthesis [35 marks]

During the radiation dominated era in the early Universe, the scale factor of the Universe  , where  is the
time since Big Bang. During most of this era, neutrons (n) and protons (p) remain in thermal equilibrium with each
other via weak interactions. The number density ( ) of free neutrons or protons is related to the temperature 
and their corresponding masses  such that

as long as time 1.70 s, when  800 keV. After , the weak interactions can no longer
maintain such equilibrium, and free neutrons decay to protons with a half-life time of 610.4 s.
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(T10.1) Let the number density of protons be , and that of neutrons be . Calculate the relative
abundance of neutrons given by the ratio  at time .

[4]

(T10.2) Photons maintain thermal equilibrium and retain a blackbody spectrum at all epochs.  

  (T10.2a) Find the index , such that . [2]

  (T10.2b) Identify which of the following graphs shows the correct behaviour of the spectral
energy density for two temperatures  and . Tick ( ) the correct option in the
Summary Answersheet.

[2]

(T10.3) After , the process of formation of deuterium from protons and neutrons is governed by the Saha
equation, given by the Indian physicist Prof. Meghnad Saha, which can be simplified to

Here, baryon-to-photon ratio  is , and  is the number density of deuterium.

 

  (T10.3a) Plot the ratio  on the grid in the Summary Answersheet, for at least 4 reasonably
spaced values of temperature that lie in the domain  = [60, 70] keV, and draw a
smooth curve passing through these points.

[5]

  (T10.3b) From the plot find  (in keV) when . [1]

  (T10.3c) Instead, now assume that all the free neutrons combine instantaneously with the
protons at  to form Deuterium, and all of which immediately gets converted to
Helium ( ). Compute the corresponding epoch or time of nucleosynthesis,  (in s),
for the formation of Helium.

[4]

(T10.4) Calculate the value of  immediately before . [5]

(T10.5) The primordial Helium abundance, , is defined to be the fraction of total baryonic mass in the
Universe that is bound in Helium just after  . Obtain a theoretical estimate for the value of 
. For the purpose of this calculation alone, assume  and that the mass of Helium, 

.

[3]

Np Nn

Xn, wk = Nn/(Nn +Np) twk

β T (a) ∝ aβ

T1 T2 ✓

twk

ND

Nn
= 6.5η( kBT

mnc2
)
3/2

exp(− (mD −mp −mn)c
2

kBT
) .

η 6.1 × 10−10 ND

ND/Nn

kBT

kBTnuc ND = Nn

kBTnuc
4
2He tnuc

Xn, nuc tnuc

Yprim
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(T10.6) The primordial abundance of Helium is very difficult to measure, as stars continuously convert
Hydrogen to Helium in the Universe. The amount of processing by stars in a galaxy is characterised
by the relative number density of Oxygen (which is only produced by stars) to hydrogen, denoted as
(O/H), in the galaxy. A compilation of the measurements of (O/H) and the Helium abundance, ,
for different galaxies is plotted below.


Use all of the points in this plot (which is reproduced in the Summary Answersheet) to answer the
following.

 

  (T10.6a) Estimate  for a blue compact dwarf galaxy with a value of (O/H)=1.75 × 10−4. [2]

  (T10.6b) Obtain the slope   of the straight line fit to the above data. [2]

  (T10.6c) Estimate the primordial Helium abundance, , based on the above observations. [2]

(T10.7) The deviation between  and  can be reconciled by changing the baryon-to-photon ratio .
When  is decreased, as indicated by  in the Summary Answersheet, indicate the increase ( ) or
decrease ( ) in ,  (when ), , , and  in the boxes provided
in the Summary Answersheet.

[3]

(T11) Stars through graphs [50 marks]

Stars can be well approximated as spherically symmetric objects, and hence the radial distance  from the centre
can be chosen as the only independent variable in modelling stellar interiors. The mass contained within a sphere
of radius  is denoted by . The luminosity  is defined as the net energy flowing outward through a
spherical surface of radius  per unit time. Other quantities of interest, for example, the density , temperature 

, hydrogen mass fraction , helium mass fraction , and the nuclear energy generated per unit mass
per unit time , are taken to be functions of .  Throughout this problem we shall neglect the effects of
diffusion and gravitational settling of elements inside the star.

The symbol "log" refers to logarithm to the base 10. The problem consists of three independent parts.

(T11.1) Part 1: Inside a star

The graph below shows the variation of three structural quantities, A, B, and C, as functions of the
fractional radius  in a stellar model of mass 1   and age 4 GYr , where  is the photospheric
radius of the star. The values of the helium mass fraction at the (photospheric) surface, , and the
metallicity (mass fraction of all elements heavier than helium) at the (photospheric) surface,  , of
the star are given by ( , ) = (0.28, 0.02). All quantities shown in the plots are normalised by their
respective maximum values.
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  (T11.1a) Identify the three quantities A, B, and C uniquely from among the five possibilities:

(Write A/B/C in the boxes beside the appropriate quantities in the Summary
Answersheet. No justification is needed for your answer.)

[6]

  (T11.1b) What is the mass fraction of helium at the centre, , of the star? [3]

  (T11.1c) Sketch the remaining two quantities from the list of five (which were not identified as
curves A, B, or C) given in (T11.1a), as functions of  on the same graph in the
Summary Answersheet, and label by their respective quantities.

[5]

(T11.2) Part 2: Evolving stars  

  Consider the evolution of a  star whose initial uniform composition is given by the mass
fractions of helium, , and metals, . The figures below show the variation of
different global quantities of this star as it evolves from ZAMS (Zero Age Main Sequence) till the end
of helium burning in its core.

 

  The graph below shows the evolutionary track of the star on the HR diagram (plot of  vs 
, where  is the surface luminosity and  is the effective temperature).

 

  The figure below has four graphs which show the variation of  (in K),  (plotted as ), 
(plotted as ), and  with age (in  109 yr) of the same star. In each of these four graphs, the
insets show the variations of the respective quantities in detail between the ages of 11.86 × 109 yr to
12.00 × 109 yr, for greater clarity.
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  Use these graphs to answer the questions below.  

  (T11.2a) What is the approximate main sequence lifetime,  (in years), of the star? [1]

  (T11.2b) What is the approximate duration,  (in years), for which the star burns helium in
its core?

[1]

  (T11.2c) What fraction, , of the initial amount of hydrogen at its centre has been burnt when
the luminosity of the star is 1 ?

[3]

  (T11.2d) What is the radius of the star,  (in units of ) when  of the initial amount of
hydrogen at its centre has been burnt?

[3]

  (T11.2e) What are the radii of the star,  and  (in units of ), corresponding to its positions
P and Q, respectively, as marked on the HR - diagram?

[4]

(T11.3) Part 3: Mass distribution inside a star  

  The equation that governs the distribution of mass inside a star is given by

It would be convenient to express this equation in terms of three dimensionless variables, namely,
the fractional mass, , the fractional radius, , and the relative density, , that we define as

where  and  are the total mass and radius of the star, respectively, and  is the

average density of the star. For the particular star that we shall be considering in this part, the
following information is given:
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The central density 

Half of the star’s mass is contained within the inner 25% of its total radius, and 70% of its mass is contained
within the inner 35% of its total radius.

  In all subsequent parts of this question, it will be sufficient to round off all derived numerical
coefficients to within 0.005.

 

  (T11.3a) Express the above equation describing the dependence of mass on radius in terms of , 

 and .

[2]

    To obtain the distribution of mass with radius, we need to know the density profile inside
the star. For the purpose of this problem, we shall describe the variation of density with
radius by approximate forms in two domains of :

the inner part of the star: 
the middle part of the star: 

We do not make any approximation for the outermost part, i.e., .

 

  (T11.3b) Approximation for the middle part:  

    The variation of , as a function of  in the middle part of the star is shown (by
the black curve) in the graph below. We shall make a linear approximation (shown as a
dashed red line in the graph) for  as a function of  in the domain 

, i.e.,  (shown by the green shaded domain).
Further, we shall approximate the slope of this line by the nearest integer.

 

    Use this approximation to write an expression for  as a function of  in the domain 
.

[4]

  (T11.3c) Use the result of (T11.3b) to derive an expression for  in the domain 
.

[6]

  (T11.3d) Approximation for the inner part:  

    In the inner part of the star ( ), the density may be approximated as a
linear function of radius, i.e., , where  are constants. Determine 
and , and hence obtain an expression for  in the domain . Note that
the approximations adopted in the previous part and this part may lead to small
discontinuities in density or mass at .

[8]
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  (T11.3e) The expressions for  obtained in parts (T11.3c) and (T11.3d) are approximations
that describe the variation of mass with radius quite well, but only in specific regions of
the star. For the domain  (for which we have not derived any expression),
it is possible to use appropriate extrapolation from the neighbouring region. Use these
approximate expressions and given data to sketch a smooth curve (without any
discontinuities either in  or its derivative) for  vs  for the entire star (

) that represents the variation of mass with radius.

[4]

(T12) Hawking Radiation from Black Holes [50 marks]

(T12.1) A black hole (BH) typically forms by the gravitational collapse of a massive star at the end of its life
cycle to a point called a singularity. Due to the extreme gravity of such an object, nothing that enters
the so-called event horizon (a spherical surface with , where  is the distance from the
singularity) is able to escape from it. Here,  is referred to as the Schwarzschild radius.

 

  (T12.1a) Modelling the origin of Hawking radiation: Consider a pair of particles, each with mass 
, produced on either side of the BH horizon. One particle is slightly outside the horizon at 

, while the other particle is inside the horizon at . Assume that the
total energy of a particle is the sum of its rest mass energy  and the gravitational
potential energy due to the BH.

 

    Determine the value of  for which the particle pair has zero total energy. [4]

  (T12.1b) Temperature of a black hole: If the particle produced outside the horizon in the above
process has enough kinetic energy, it may escape the BH in a process called Hawking
radiation. The one inside the horizon, which has negative energy, gets absorbed and
decreases the mass of the BH.

 

    Assume that all Hawking radiation is made of photons with a black body spectrum
which peaks at the wavelength . It is known that for a solar mass BH, 

2.952 km.

 

    Obtain an expression for the temperature, , of the BH corresponding to this black
body radiation, in terms of its mass  and physical constants. Calculate the
Schwarzschild radius, , and temperature, , for a BH with mass 10  .

[4]

  (T12.1c) Mass loss of a black hole: Assume that the Hawking radiation is emitted out from the
event horizon.

 

    Using the mass-energy equivalence, obtain an expression for the rate of mass loss, 
, in terms of the mass  of the BH and physical constants.

 

    Hence, obtain an expression for  for a BH with initial mass . Sketch 
as a function of  from  to .

[8]

  (T12.1d) Lifetime of a black hole: Obtain an expression for the lifetime  at which a black hole
with initial mass  completely evaporates due to Hawking radiation, in terms of 
and physical constants. Calculate the lifetime  (in seconds) for a black hole with 

 10  .

[3]

  (T12.1e) Black hole in a CMB radiation bath: Consider an isolated black hole in space, far away
from other bodies, with a current temperature , surrounded by the cosmic
microwave background (CMB) with a current temperature  2.7 K. The black hole
can grow in mass by absorbing CMB radiation, and lose its mass by Hawking radiation.

 

    Taking into account the accelerating expansion of the Universe, identify which of the
following figures show the long-term time evolution of  in the following three cases:

(X) , (Y) , (Z) .
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    Indicate your answer by ticking the appropriate box (only one) for each case X, Y or Z in
the Table given in the Summary Answersheet corresponding to the appropriate figure
number.

[6]

(T12.2) Primordial black holes (PBHs) of much smaller masses can form in the very early Universe. All the
following questions are related to PBHs. Here, any processes that increase the mass of the black hole
may be neglected.

 

(T12.2a) PBH evaporating at the current epoch: As you may have noticed from the answers to the
previous questions, black holes of solar mass would take a long time to evaporate.
However, since PBHs can have a much smaller mass, we may be able to see them
evaporating in current times.

Find the initial mass  (in kg), Schwarzschild radius  (in m), and
temperature  (in K) of a black hole that may be evaporating away completely at
the present epoch, i.e., those with lifetime  billion years.

[4]

  (T12.2b) Formation of a PBH: In the radiation-dominated early Universe, the scale factor varies as 
. In this era, PBHs form due to the collapse of all energy contained in a region

of physical size , where  is the age of the Universe at that time.

 

    A PBH with mass of 1  ×  1012  kg forms when the age of the Universe is about
1 × 10−23  s. Calculate the age of the Universe, , when a PBH of mass 1 × 1020  kg
forms.

[6]

  (T12.2c) Observed spectrum of Hawking radiation from PBH: Consider a PBH of initial mass
1 × 1010   kg which completely evaporates at the end of its lifetime . For this part,
assume for simplicity that most of the Hawking radiation is emitted at this time, with a
temperature corresponding to its initial mass. Also, take the scale factor of the Universe to
be evolving as .

 

    Calculate the peak wavelength of this Hawking radiation as observed at Earth, , at
the present epoch (at  billion years).

[5]

  (T12.2d) High energy cosmic radiation from PBH: Now assume that the Hawking radiation
emitted at a given time  corresponds to photons emitted with an energy . Also,
the highest possible temperature for a black hole is the Planck temperature 
where   1 × 1019 GeV.

 

    The evolution of the scale factor over relevant time scales is given in the following figure.
The scale factor today is set to be unity.  on the time axis represents the age of the
universe in seconds.
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    If a photon with an energy of  3.0 × 1020 eV is observed on Earth, determine the
largest and the smallest possible values of the initial mass of the PBH (  and 

, respectively) which could be responsible for this photon.

[10]Edet =
Mmax

0

Mmin
0
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