

(D01) 30 лет экзопланетам

[90 баллов]

В этой задаче рассматриваются два основных метода обнаружения экзопланет: измерения лучевой скорости звезды и прохождение планеты по ее диску (транзит). В рамках этой задачи мы рассмотрим конкретную систему из одной планеты (P), вращающейся по круговой орбите радиусом a вокруг звезды солнечного типа (S). Будем называть эту систему «системой SP» ("SP system").

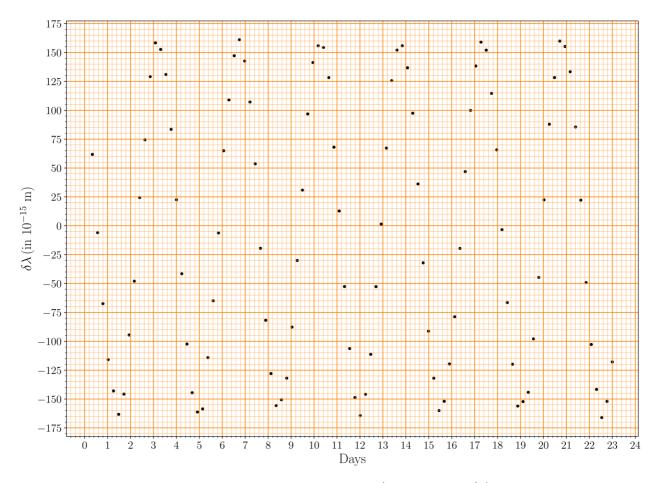
(D01.1) Видимая звездная величина звезды S в полосе V составляет 7.65 \pm 0.03 звездной величины (mag), параллакс составляет 20.67 \pm 0.05 угловой миллисекунды (mas), а болометрическая поправка (BC) составляет (-0,0650) звездной величины. Таким образом болометрическая яркость звезды выше чем ее яркость в полосе V.

Оцените массу звезды $M_{\rm s}$ (в единицах ${\rm M}_{\odot}$), предполагая, что соотношение массы и **[8]** светимости (M-L) имеет вид $L \propto M^4$. Также расчитайте абсолютную ошибку определения $M_{\rm s}$. Известно, что ${\rm d} \ln x/{\rm d} x=1/x$.

Метод лучевой скорости

Метод лучевой скорости использует доплеровское смещение $\delta\lambda \equiv \lambda_{\rm obs} - \lambda_0$ между наблюдаемой длиной волны $\lambda_{\rm obs}$ и длиной волны покоящегося источника λ_0 известной спектральной линии для обнаружения экзопланеты и определения ее характеристик.

На рисунке ниже показана $\delta\lambda$ для линии Fe I ($\lambda_0=543,\!45\times10^{-9}$ м) как функция времени, наблюдаемая для системы SP.



Амплитуда лучевой скорости K определяется как $K\equiv (v_{\rm r,\,max}-v_{\rm r,\,min})/2$, где $v_{\rm r,\,max}$ и $v_{\rm r,\,min}$ — минимальная и максимальная лучевые скорости, соответственно. Для круговой планетарной орбиты амплитуда K может быть записана как:

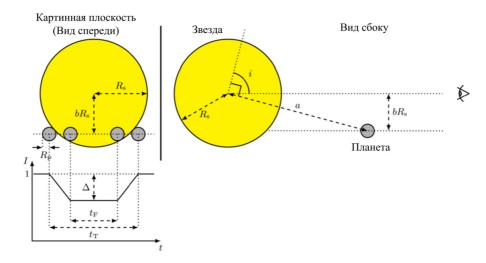
$$K = \left(rac{2\pi G}{T}
ight)^{1/3} rac{M_{
m p} \sin i}{(M_{
m p} + M_{
m s})^{2/3}}$$

где T — период, i — наклонение планетарной орбиты (угол между нормалью к плоскости орбиты планеты и лучом зрения наблюдателя), $M_{\rm p}$ и $M_{\rm s}$ — массы планеты и звезды соответственно.

- (D01.2) Используйте график, представленный выше и приведенный в сводном листе для ответов (повернутый на 90^{0}) при ответе на следующие вопросы.
 - (D01.2a) Нарисуйте гладкую кривую, соответствующую наблюдаемым данным, [2 показанным на графике.
 - (D01.2b) Выберите подходящие точки на вашей кривой и с их помощью определите T и K вместе с соответствующими ошибками их определения (неопределённостями). Все точки данных, использованные для расчёта T и K должны быть занесены в таблицу в сводном листе ответов. Используйте оставшуюся часть таблицы для отображения промежуточных расчетов, если это необходимо, с нужными заголовками.
 - (D01.2c) Найдите минимальную массу планеты $M_{
 m p,\,min}$ (в ${
 m M}_{\odot}$) и ошибку ее определения **[5]** (неопределенность), предполагая $M_{
 m p} \ll M_{
 m s}$.
 - (D01.2d) Используя значение $M_{
 m p,\,min}$ оцененное в части (D01.2c), вычислите минимальное [4] значение большой полуоси орбиты планеты, $a_{
 m min}$, в а.е. и его ошибку определения (неопределенность).

Метод транзита (без затемнения лимба)

Ниже представлена схема транзита планеты (масштаб не соблюдён). В качестве исходного предположения будем считать, что звёздный диск имеет равномерную среднюю интенсивность с собственными флуктуациями, обусловленными самой звездой.



Кривая блеска нормированной интенсивности, I, как функция времени t показана на схематической диаграмме транзита (на рисунке выше). Средняя интенсивность звезды вне транзита принята за единицу. Максимальное уменьшение интенсивности Δ определяется из нормированной кривой блеска. Для равномерно яркого звездного диска радиус планеты, $R_{\rm p}$, связан с Δ как

$$\left(rac{R_{
m p}}{R_{
m s}}
ight)^2 = \Delta,$$

где $R_{\rm s}$ — радиус звезды.

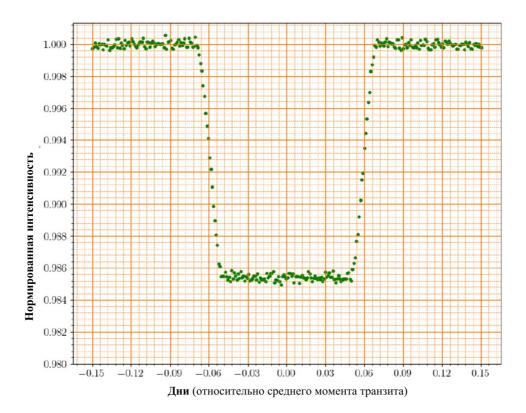
Общая продолжительность транзита (когда планета частично или полностью находится перед диском звезды) определяется как $t_{\rm T}$, а $t_{\rm F}$ — это продолжительность, когда планета полностью находится перед диском звезды. «Прицельное расстояние» b — это проецируемое расстояние между планетой и центром диска звезды в средней точке транзита, выраженное в единицах радиуса звезды, $R_{\rm s}$.

Для орбит планет с наклонением близким к 90°, прицельное расстояние определяется формулой

$$b = \left[rac{(1-\sqrt{\Delta})^2 - (t_{
m F}/t_{
m T})^2(1+\sqrt{\Delta})^2}{1-(t_{
m F}/t_{
m T})^2}
ight]^{1/2}$$

(D01.3) В данной системе SP радиус звезды равен $R_{\rm s}=1.20{
m R}_{\odot}$ и транзит планеты действительно [3] наблюдается. Используя минимальный радиус орбиты $a_{\rm min}$, оцененный в пункте (D01 .2d), найдите минимальное значение наклонения орбиты $i_{\rm min}$.

Если предположить, что звездный диск имеет равномерную яркость, то кривая блеска при транзите будет выглядеть так, как показано на рисунке ниже.



- (D01.4) Используя данную кривую блеска, ответьте на следующие вопросы. Указанная выше кривая блеска также приведена в сводном листе ответов.
 - (D01.4a) Оцените значения $t_{\rm T}$ и $t_{\rm F}$ в днях, отметив соответствующие показания на [3] графике.
 - (D01.4b) Оцените среднее значение Δ , отметив соответствующие показания на [2] графике, и, следовательно, найдите $R_{\rm p}$ в единицах ${\rm R}_{\odot}$.
 - (D01.4c) Определите значение i в градусах, предполагая, что радиус орбиты равен a_{\min} . [2]

Учет эффекта затемнения лимба

До сих пор мы предполагали, что звёздный диск имеет равномерную яркость. В действительности наблюдаемая яркость звёздного диска неравномерна из-за «затемнения лимба» — оптического эффекта, при котором центральная часть звёздного диска кажется ярче края, или «лимба».

[4]

Эффект затемнения лимба можно измерить по относительной интенсивности $J(\theta) \equiv \frac{I(\theta)}{I(0)}$, где θ — угол между нормалью к поверхности звезды в точке и линией, соединяющей наблюдателя с этой точкой, $I(\theta)$ — наблюдаемая интенсивность звездного диска в этой точке (I(0) — интенсивность в центре звездного диска). Для удаленного наблюдателя θ изменяется от $\theta=0$ (центр диска) до $\theta\approx 90^\circ$)(край диска).

(D01.5) В таблице ниже приведены измеренные значения $J(\theta)$ на определённой длине волны для Солнца. Будем считать, что тот же профиль затемнения лимба справедлив и для звезды S.

	θ	$J(\theta)$	θ	$J(\theta)$	θ	J(heta)	θ	J(heta)
	0°	1.000	20°	0.971	40°	0.883	70°	0.595
	10°	0.994	25°	0.950	50°	0.794	80°	0.475
	15°	0.984	30°	0.943	60°	0.724	90°	0.312

Профиль затемнения лимба можно апроксимировать квадратичной зависимостью:

$$J(\theta) = 1 - a_1(1 - \cos \theta) - a_2(1 - \cos \theta)^2,$$

где a_1 и a_2 — два коэффициента.

Расчитайте неизвестные коэффициенты a_1 и a_2 по имеющимся данным, построив график с подходящими переменными.

(D01.5a) Выберите пару переменных (x_1,y_1) , которые являются подходящими функциями θ и J, которые вы хотите отложить по осям x и y соответственно, чтобы определить a_1 и a_2 . Запишите выражения для x_1 и y_1 .

Если вам необходимо определить дополнительные переменные для дополнительных графиков, определите их как (x_2, y_2) и т. д.

- (D01.5b) Составьте таблицу значений, необходимых для ваших графиков.
- (D01.5c) Нанесите вновь определенные переменные на предоставленную [7] миллиметровую бумагу (обозначьте свой график как « D01.5c»).
- (D01.5d) Определите a_1 и a_2 из графика. Оценка точности не требуется. [7]

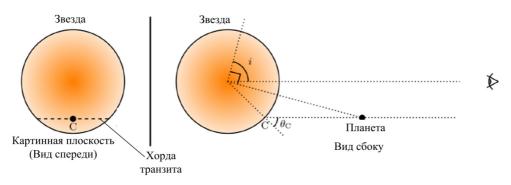
Транзит при наличии затемнения лимба

Теперь рассмотрим транзиты планет по диску звезды, затемнённому к краю. При наличии затемнения лимба, которое мы будем моделировать квадратичной зависимостью $J(\theta)$, приведённой выше, средняя наблюдаемая интенсивность всего диска звезды (без транзита), $\langle I \rangle$, определяется по формуле:

$$\langle I
angle = \Big(1 - rac{a_1}{3} - rac{a_2}{6}\Big)I(0)$$

Кроме того, уменьшение яркости света звезды, вызванное транзитом планеты, зависит не только от отношения размера планеты и звезды $\left(\frac{R_{\rm p}}{R_{\rm s}}\right)$ но и от профиля интенсивности звездного диска вдоль хорды транзита, которая, в свою очередь, зависит от наклонения i.

Это представлено на принципиальной схеме ниже (масштаб не соблюден). На рисунке более яркие области звезды показаны более темным оттенком, а планета показана черной точкой.



Здесь соотношение между $\left(\frac{R_{
m p}}{R_{
m s}}
ight)$ и измеренной по кривой блеска Δ определяется по формуле

$$\Delta = rac{I(heta_{
m C})}{\langle I
angle}igg(rac{R_{
m p}}{R_{
m s}}igg)^2,$$

, где $I(\theta_{\rm C})$ — интенсивность звездного диска в средней точке транзитной хорды (точка C на рисунке выше), $\theta_{\rm C}$ — угол между лучом зрения и нормалью к поверхности в этой точке. Видно, что для данной звезды одно и то же значение Δ может быть получено разными комбинациями размера планеты, $R_{\rm p}$ и наклонения i .

(D01.6)

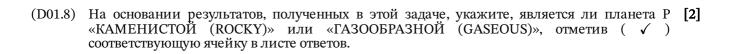
Можно однозначно определить как $R_{\rm p}$ так и i, используя данные кривых блеска при наблюдении транзита на двух длинах волн, например, $\lambda_{\rm B}$ (синяя) и $\lambda_{\rm R}$ (красная). Коэффициенты затемнения лимба для этих двух длин волн приведены ниже:

Длина волны	a_1	a_2
$\lambda_{ m B}$	0,82	0,05
$\lambda_{ m R}$	0,24	0,20

- (D01.6a) Какое из следующих утверждений, описывающих связь между максимальной [2] глубиной транзита Δ для $\lambda_{\rm B}$ и наклонением (i) орбиты, является верным? Отметьте ваш ответ знаком (\checkmark) в сводном листе для ответов.
 - А. Δ увеличивается с уменьшением i .
 - В. Δ уменьшается с уменьшением i .
 - С. Δ не зависит от i .
- (D01.6b) Максимальная глубина транзита (Δ) для «системы SP» составила 0,0182 и 0,0159 **[4]** для $\lambda_{\rm B}$ и $\lambda_{\rm R}$, соответственно.

Нарисуйте схематично транзитные кривые блеска для λ_B и λ_R на заданной сетке и обозначьте кривые как «В» и «R» соответственно. Предположим, что общая продолжительность транзита одинакова для обеих длин волн. Масштаб кривых не требуется, но они должны правильно отражать форму кривых блеска.

- (D01.7) Для нахождения значений $R_{\rm p}$ и i для системы SP будем использовать графический метод.
 - (D01.7a) Напишите выражение, связывающее переменные, которые вы отобразите на графике. (Подсказка: среди соответствующих переменных можно рассмотреть i , b , $R_{\rm p}$.)
 - (D01.7b) Внесите в таблицу величины, которые вы используете для построения графика. [5]
 - (D01.7c) Нарисуйте необходимый график и обозначьте его как « D01.7c». [7]
 - (D01.7d) Оцените значения $R_{\rm p}$ (в единицах ${\rm R}_{\odot}$) и i (в градусах) из графика. [4]



(D02) Прогнозирование времени прибытия корональных выбросов массы на Землю

[60 баллов]

Солнце иногда выбрасывает облака намагниченной плазмы, называемые корональными выбросами массы (coronal mass ejections, CME), которые возникают на поверхности Солнца и распространяются в направлении от него. Точное предсказание времени их прибытия к Земле имеет важное значение для понимания и минимизации их воздействия на спутники, вращающиеся вокруг Земли. В данной задаче ваша цель — предсказать время прибытия СМЕ, разработав эмпирическую модель на основе данных о 10 СМЕ. В этой задаче расстояние между поверхностью Солнца и Землёй принимается равным $214R_{\odot}$.

Далее предположим, что Солнце не вращается. Под действием электромагнитных, гравитационных сил и сил сопротивления корональные выбросы массы движутся с переменным ускорением на протяжении всего своего пути. В первых двух частях этой задачи мы предполагаем, что пространство между Солнцем и Землёй является вакуумом.

Корональные выбросы массы (CMEs) проходящие через вакуум.

(D02.1) Начальная скорость u на поверхности Солнца ($=1\mathrm{R}_{\odot}$), конечная скорость v при достижении Земли и время прибытия на Землю после покидания поверхности Солнца (в часах) τ для 10 корональных выбросов массы (CMEs) приведены в следующей таблице.

CME	u	v	au
	$(км c^{-1})$	$(км c^{-1})$	(час)
CME-A	804	470	74,5
CME-B	247	360	127,5
CME-C	523	396	103.5
CME-D	830	415	71.0
CME-E	665	400	104.5
CME-F	347	350	101.5
CME-G	446	375	99,5
СМЕ-Н	155	360	97.0
CME-I	1016	515	67.0
CME-J	683	410	54.0

(D02.1a) Рассчитайте среднее ускорение a для каждого СМЕ в м с $^{-2}$.

[3]

(D02.1b) Мы предлагаем эмпирическую модель ускорения $a_{\rm model}$ коронального выброса массы, которая зависит от его начальной скорости u следующим образом: $a_{\rm model}=m\left(\frac{u}{u_0}\right)+\alpha$, где $a_{\rm model}$ выражается в м с $^{-2}$, u выражается в км с $^{-1}$ и $u_0=1,00\times 10^3$ км с $^{-1}$.

Определите постоянные m и α и их ошибки определения (неопределенности), [15] начертив соответствующий график (обозначьте свой график как «D02.1b»).

- (D02.1c) Для каждого СМЕ запишите $a_{\rm model}$ в м с $^{-2}$. Вычислите среднеквадратичное отклонение ускорений $\delta a_{\rm rms}$ между рассчитанным ускорением a и значениями ускорения, расчитанного по модели $a_{\rm model}$.
- (D02.2) Рассмотрим два других корональных выбросов массы: СМЕ-1 и СМЕ-2, с начальными скоростями $u=1044~{\rm km~c^{-1}}$ и 273 км с $^{-1}$ соответственно.

- (D02.2a) Используя эмпирическую модель, полученную в (D02.1b), рассчитайте [4] прогнозируемое время прибытия на Землю, $\tau_{1,\,\mathrm{m}}$ и $\tau_{2,\,\mathrm{m}}$ (в часах), для СМЕ-1 и СМЕ-2 соответственно.
- (D02.2b) Наблюдаемое время прибытия корональных выбросов массы (СМЕ-1) и (СМЕ-2) на Землю составило 46,0 ч и 74,5 ч соответственно. Эмпирическая модель считается ПРАВИЛЬНОЙ (VALID) для конкретного коронального выброса массы, если прогнозируемое ей время прибытия находится в пределах 20% от наблюдаемого времени прибытия; в противном случае она НЕПРАВИЛЬНА (NOT VALID). Укажите правильность модели для каждого коронального выброса массы, отметив (✓) соответствующее поле в таблице на сводном листе ответов.

Корональные выбросы массы в присутствии солнечного ветра

В действительности, пространство между Солнцем и Землёй пронизано солнечным ветром, который оказывает на корональные выбросы массы (СМЕ) силу сопротивления. Эта сила сопротивления может как замедлять, так и ускорять СМЕ, в зависимости от скорости СМЕ относительно скорости солнечного ветра. Для учёта влияния солнечного ветра мы будем использовать модель «только сопротивления» для расстояний $R_{\rm obs}(t) \geq R_0$, где R_0 — расстояние, за пределами которого сила сопротивления становится доминирующей силой, влияющей на движение СМЕ.

Расстояние от поверхности Солнца, определенное с помощью модели «только сопротивление (drag-only)», $R_{\rm D}(t)$, и скорость, $V_{\rm D}(t)$, коронального выброса массы в этой модели описываются зависимостями

$$egin{aligned} R_{
m D}(t) &= rac{S}{\gamma} {
m ln} \left[1 + S \gamma (V_0 - V_{
m s}) (t - t_0)
ight] + V_{
m s} (t - t_0) + R_0 \ V_{
m D}(t) &= rac{V_0 - V_{
m s}}{1 + S \gamma (V_0 - V_{
m s}) (t - t_0)} + V_{
m s} \end{aligned}$$

, где $\gamma=2\times 10^{-8}$ км $^{-1}$, $V_{\rm s}$ — постоянная скорость солнечного ветра, R_0 и V_0 — расстояние и скорость, соответственно, в момент времени t_0 , а S — знак разности скоростей, S=1 если $V_0>V_{\rm s}$; S=-1 если $V_0< V_{\rm s}$.

(D02.3) В таблицах ниже показано наблюдаемое радиальное расстояние от поверхности Солнца $R_{\mathrm{obs}}(t)$ (измеренное в R_{\odot}) как функция времени t (в часах) для двух корональных выбросов массы: СМЕ-3 и СМЕ-4. Последняя точка данных в каждой таблице (D5 и P8 соответственно) соответствует времени прибытия соответствующего коронального выброса массы к Земле. В этой части задания предположим, что $V_{\mathrm{s}}=330$ км с $^{-1}$.

CME-3				
Точка данных	<i>t</i> (в ч)	$R_{ m obs}(t)$ (b ${ m R}_{\odot}$)		
D1	0,200	6.36		
D2	0,480	7.99		
D3	1.22	11.99		
D4	1.49	13.51		
D5	58.05	214		

CME-4				
Точка данных	<i>t</i> (в ч)	$R_{ m obs}(t)$ (в ${ m R}_{\odot}$)		
P1	1.00	4.00		
P2	3.00	6.00		
Р3	4.00	9.00		
P4	5.00	11.0		
P5	21.0	43.0		
P6	50.0	100		
P7	85.0	170		
P8	111	214		

Мы оценим, насколько хорошо модель «только сопротивления» предсказывает время прибытия этих корональных выбросов массы. Для использования этой модели необходимо сделать правильный выбор t_0 и соответствующих R_0 и V_0 .

(D02.2-)	TCMT 2	
(D02.3a)	Для СМЕ-3 возьмем следующие два случая:	

[6]

- (C1) t_0 принимается за середину интервала D1 D2
- (C2) t_0 принимается за середину интервала D3 D4

Предположим, что скорость остается постоянной в каждом конкретном интервале D1–D2 и D3–D4, но может различаться между двумя интервалами.

Используя t_0 , R_0 и V_0 , вычислите разницу между наблюдаемым и прогнозируемым радиальным расстоянием $\delta R_{\rm D} \equiv R_{\rm obs}(t) - R_{\rm D}(t)$ в единицах ${\rm R}_\odot$ при t=58,05 ч для каждого из двух случаев.

- (D02.3b) Оцените $R_{\rm D}(t)$ в точках P5, P6, P7 и P8 между Солнцем и Землей для СМЕ-4 для [4] следующих двух случаев, применяя процедуру, аналогичную (D02.3a):
 - (C3) t_0 принимается за середину интервала Р1 Р2
 - (C4) t_0 принимается за середину интервала P3 P4.
- (D02.3c) Постройте график зависимости $R_{\rm D}(t)$ (в ${\rm R}_{\odot}$) от t (в часах) для двух случаев, С3 и [10] С4, для СМЕ-4 в точках Р5, Р6, Р7 и Р8 (обозначьте свой график как «D02.3c»). На том же графике постройте гладкие кривые $R_{\rm D}(t)$ для двух вышеупомянутых случаев. Для этого возьмите диапазон оси x от 0 до 180 часов.
- (D02.3d) Используя график, оцените абсолютную разницу $|\delta \tau|$ между фактическим [4] временем прибытия СМЕ-4 на Землю и временем его прибытия, предсказанным с помощью модели, учитывающей только сопротивление (drag-only model), для каждого из случаев С3 и С4.

[1]

Укажите, является ли следующее утверждение BEPHЫМ (TRUE) или ЛОЖНЫМ (FALSE), отметив (\checkmark) соответствующую ячейку в сводном листе для ответов (письменное обоснование не требуется):

«Воздействие сил сопротивления солнечного ветра на корональные выбросы массы становится доминирующим для СМЕ-3 на более раннем моменте времени, чем для СМЕ-4».

(D02.4) Рассмотрим силу сопротивления как доминирующую силу, действующую на 10 **[7]** корональных выбросов массы, рассмотренных в части D02.1. Предположим, что модель «только сопротивление» применима от поверхности Солнца ($R_0=1~{\rm R}_\odot$) и далее для всех корональных выбросов массы.

Оцените и запишите в таблицу скорость солнечного ветра $V_{\rm s}$ в км/ с для каждого коронального выброса массы. Затем оцените среднее значение скорости солнечного ветра $V_{\rm s,\,avg}$ для всех 10 выбросов корональной массы.