
(D01) 30 Years of Exoplanets [90 marks]

This problem explores some aspects of the two main methods of exoplanet detection: radial velocity and transit
light curves. Throughout this problem we shall consider a particular system of a single planet (P) in a circular orbit
with radius   around a solar-type star (S). We shall refer to this system as the “SP system”.

(D01.1) The V-band apparent magnitude of the star S is 7.65 ± 0.03 mag, the parallax is 20.67 ± 0.05
milliarcseconds and the bolometric correction (BC) is −0.0650 mag. Thus the star has a higher
bolometric luminosity than its V-band luminosity.

 

  Estimate the mass of the star,  (in units of ), assuming a mass - luminosity ( – ) relation of
the form . Also estimate the uncertainty in . You may need .

[8]

 

Radial Velocity method

The radial velocity method uses the Doppler shift  between the observed wavelength  and the
rest wavelength  of a known spectral line to detect an exoplanet and determine its characteristics.

The figure below shows the  for the Fe I line (  543.45 × 10−9 m) as a function of time as observed for the SP
system.
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The radial velocity semi-amplitude   is defined as  where  and  are the
maximum and minimum radial velocities, respectively. For a circular planetary orbit the semi-amplitude  can be
written as:

where  is the period,  is the inclination of the planetary orbit (angle between the normal to the orbital plane of the
planet and the line of sight of the observer),  and  are the masses of the planet and the star, respectively.

(D01.2) Use the above graph given in the Summary Answersheet (rotated by ) to answer the following.  

  (D01.2a) Draw a smooth curve associated with the observed data shown in the graph. [2]

  (D01.2b) Select appropriate points on your drawn curve and use suitable methods to determine 
 and  along with respective uncertainties. All data points used for the calculation of
 and  must be shown in the table in the Summary Answersheet. Use the rest of the

Table to show your intermediate calculations, as needed, with appropriate headers.

[11]

  (D01.2c) Find the minimum mass of the planet  (in ), and its corresponding
uncertainty assuming  .

[5]

  (D01.2d) Using the value of  estimated in part (D01.2c), calculate the minimum value of
the semi-major axis of the planet’s orbit, , in au and its uncertainty.

[4]

Transit method (without limb darkening)

The schematic diagram of a planet transit (not drawn to scale) is shown below. Initially, we shall assume the stellar
disc to have a uniform average intensity with some intrinsic noise due to the star itself.

The light curve of the normalised intensity,  , as a function of time  is shown in the schematic diagram of the
transit above. The average stellar intensity outside the transit is taken as unity. The maximum decrease in the
intensity is given by  in the normalized light curve. For a uniformly bright stellar disc, the radius of the planet, ,
is related to  as

where  is the radius of the star.

The total duration of transit (when part or all of the planet covers the stellar disc) is given by , while  gives the
duration when the planet is fully in front of the stellar disc. The “impact parameter”   is the projected distance
between the planet and centre of the stellar disc at the mid-point of the transit, in units of the stellar radius, .
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For a nearly edge-on star-planet orbit, the impact parameter is given by the formula

(D01.3) For the SP system, the stellar radius is known to be , and the transit of the planet is
indeed visible. Using the minimum orbital radius, , estimated in part ( .2d), find the
minimum value, , of the inclination angle.

[3]

  Assuming a stellar disc of uniform brightness, the transit light curve would look like as shown below.  

(D01.4) Using the given light curve answer the following questions. For your reference the above light curve
is also given in the Summary Answersheet.

 

  (D01.4a) Estimate the values of  and  in days by marking appropriate readings on the graph. [3]

  (D01.4b) Estimate the mean value of  by marking appropriate readings on the graph and
hence find  in units of .

[2]

  (D01.4c) Determine the value of  in degrees assuming the orbital radius to be . [2]

Introducing limb darkening

So far we have assumed the stellar disc to be uniformly bright. In reality, the observed brightness of the stellar disc
is not uniform due to “limb darkening” — an optical effect where the central part of the stellar disc appears brighter
than the edge, or the “limb”.

The limb darkening effect can be measured by the relative intensity , where  is the angle between the

normal to the stellar surface at a point and the line joining the observer to that point,  is the observed intensity
of the stellar disc at that point and  is the intensity at the centre of the stellar disc. For a distant observer, 
varies from  (centre of the disk) to  ≈ 90° (edge of the disc).
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(D01.5) The table below gives measured  at a certain wavelength for the Sun. We shall assume that the
same limb darkening profile holds for the star S.

     
0°   20°   40°   70°

10°   25°   50°   80°
15°   30°   60°   90°

 

The limb darkening profile can be modelled by a quadratic formula:

where  and  are two constants.

We shall estimate the unknown coefficients  and  from the given data by making a plot with suitable variables.

  (D01.5a) Choose a pair of variables  which are suitable functions of  and , which you
will plot along  and  axes respectively, in order to determine  and . Write the
expressions for  and .

[2]

    If you need to define additional variables for additional plots, define them as ( ), etc.  

  (D01.5b) Tabulate the values necessary for your plots. [4]

  (D01.5c) Plot the newly defined variables on the given graph paper (mark your graph as
"D01.5c").

[7]

  (D01.5d) Obtain  and  from the plot. Uncertainties on the values are not needed. [7]

Transit in the presence of limb darkening

Now, we consider planetary transits across a limb-darkened stellar disc. In the presence of limb darkening, which
we shall model by the quadratic formula of  given above, the average observed intensity of the entire stellar
disc (without any transit), , is given by:

Further, the dip in the light caused by the transiting planet now depends not only on the relative size of the planet

and the star, , but also on the intensity profile of the stellar disc along the transit chord, which in turn,

depends on the angle of inclination, .

The schematic diagram below (not drawn to scale) shows the configuration. Note that the brighter part of the star is
shown in a darker shade, while the planet is shown as a black dot.
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Here the relation between   and the measured  from the light curve is

where  is the intensity of the stellar disc at the midpoint of the transit chord (point C in the figure above), and 
 is the angle between the line of sight and the normal to the surface at that point. From the above it is obvious that

for a given star, the same value of  can be produced by many combinations of the planet size, , and the
inclination angle .

(D01.6) It is possible to uniquely determine both  and  by using data from transit light curves at two
wavelengths, say,   (blue) and  (red). The limb darkening coefficients for these two wavelengths
are given below:

Wavelength
0.82 0.05
0.24 0.20

 

  (D01.6a) Choose the correct statement among the following that describes the relation between
the maximum depth of the transit  for  and the inclination angle ( ) of the orbit and
tick it (✔) in the Summary Answersheet.

A.  increases with decreasing .
B.  decreases with decreasing .
C.  is independent of .

[2]

  (D01.6b) The maximum depth of the transit ( ) for the "SP system" was measured to be 0.0182
and 0.0159 for  and , respectively.

Draw schematic transit light curves for both  and  on the given grid and label the
curves by “B” and “R”, respectively. Assume that the total transit duration is same for
both wavelengths. The curves need not be to scale, but should represent the shapes of
the light curves correctly.

[4]

(D01.7) We will use a graphical method to find the values of  and  for the SP system using the
measurements of  at  and .

 

  (D01.7a) Write an appropriate expression connecting the relevant variables that are to be plotted.
(Hint: You may consider  or , and , among the relevant variables.)

[6]

  (D01.7b) Tabulate the appropriate quantities that are to be plotted. [5]

  (D01.7c) Draw a suitable graph and mark it as "D01.7c". [7]

  (D01.7d) Estimate the values of  (in ) and  (in degrees) from the graph. [4]

(D01.8) Based on the results obtained in this problem, indicate whether the planet P is “ROCKY” or
“GASEOUS” by ticking ( ) the appropriate box in the Summary Answersheet.

[2]
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(D02) Predicting arrival times of coronal mass ejections on Earth [60 marks]

The Sun occasionally releases magnetised plasma, called coronal mass ejections (CMEs), that originate from the
surface of the Sun and propagate outwards. Accurate prediction of their arrival times at Earth is crucial for
understanding and mitigating their potential effects on satellites orbiting the Earth. In this problem, we aim to
predict the arrival times of CMEs by developing an empirical model, using the data of 10 CMEs. Throughout this
problem, the distance between the Sun’s surface and the Earth is taken to be  .

Further, assume that the Sun is not rotating. Due to electromagnetic, gravitational, and drag forces, CMEs
experience a variable acceleration throughout their propagation. In the first two parts of this problem, we assume
that the region between the Sun and the Earth is a vacuum.

CMEs through vacuum.

(D02.1)  The initial velocity, , at the solar surface ( ), the final velocity, , upon reaching Earth, and
the time to arrive at Earth after leaving the surface of the Sun,   (in hours), are given for 10 CMEs in
the following table.

 

 

CME

Name (km s−1) (km s−1) (h)

CME-A 804 470 74.5

CME-B 247 360 127.5

CME-C 523 396 103.5

CME-D 830 415 71.0

CME-E 665 400 104.5

CME-F 347 350 101.5

CME-G 446 375 99.5

CME-H 155 360 97.0

CME-I 1016 515 67.0

CME-J 683 410 54.0

 

  (D02.1a) Calculate the average acceleration, , for each CME in m s−2. [3]

  (D02.1b) We assume an empirical model for the acceleration of a CME, , which depends on

its initial velocity  as,  where,  is expressed in m s−2,  is

expressed in km s−1 and  1.00 × 103 km s−1.

 

    Determine the constants  and  and their associated uncertainties using an
appropriate graph (mark your graph as “D02.1b”).

[15]

  (D02.1c) For each CME, tabulate  in m s−2. Hence calculate the root-mean-square (rms)
deviation of accelerations,  , between the calculated acceleration, , and the model
values,  .

[4]

(D02.2) We consider two other CMEs: CME-1 and CME-2, with initial velocities, 1044  km  s−1 and
273 km s−1, respectively.

 

  (D02.2a) Using the empirical model obtained in (D02.1b), calculate the predicted arrival times at
Earth,  and  (in hours), for CME-1 and CME-2, respectively.

[4]
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  (D02.2b) The observed arrival times at Earth of CME-1 and CME-2 are 46.0 h and 74.5 h,
respectively. The empirical model is considered to be VALID for a particular CME, if its
predicted arrival time is within 20% of its observed arrival time; otherwise, it is NOT
VALID. Indicate the validity of the model for each CME by ticking ( ) the appropriate
box in the Summary Answersheet.

[2]

CMEs in presence of solar wind

In reality, the space between the Sun and the Earth is permeated with the solar wind, which exerts a drag force on
the CMEs. This drag force can either decelerate or accelerate a CME, depending on the CME’s velocity relative to
that of the solar wind. To account for the solar wind’s influence, we will use a “drag-only” model for distances

  , where  is the distance beyond which the drag force becomes the dominant force that affects the
CME’s motion.

As determined from the “drag-only” model, the distance from the surface of the Sun, , and the velocity, 
 of a CME in this model is given by

where,  2 × 10−8  km-1,  is the constant speed of the solar wind,  and  are the distance and velocity at
time , and  is the sign factor.  if ;  if .

(D02.3) The tables below show the observed radial distance from the surface of the Sun,  (measured
in ), as a function of time  (in hours), for two CMEs: CME-3 and CME-4. The last data point in
each table (D5 and P8, respectively) corresponds to the arrival time of the respective CME at Earth.
For this part, assume  330 km s−1.

 

 

CME-3

Data point  (in h)  (in  )

D1 0.200 6.36

D2 0.480 7.99

D3 1.22 11.99

D4 1.49 13.51

D5 58.05 214

CME-4

Data point  (in h)  (in  )

P1 1.00 4.00

P2 3.00 6.00

P3 4.00 9.00

P4 5.00 11.0

P5 21.0 43.0

P6 50.0 100

P7 85.0 170

P8 111 214

 

  We shall evaluate if the “drag-only" model satisfactorily predicts the arrival times of these CMEs. To
use this model, an appropriate choice of  and corresponding   and  needs to be made.
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  (D02.3a) For CME-3, consider the following two cases:

(C1)  taken to be the midpoint of the interval D1 – D2

(C2)  taken to be the midpoint of the interval D3 – D4

Assume the velocity remains constant in each specific interval D1–D2 and D3–D4, but
may differ between the two intervals.

Using  , , and , calculate the difference between the observed and the predicted
radial distance  in units of  at  58.05 h, for each of the two
cases.

[6]

  (D02.3b) Evaluate  at points P5, P6, P7, and P8 (between the Sun and the Earth) for CME-4
for the following two cases, adopting the procedure similar to (D02.3a):

[4]

    (C3)  taken to be the midpoint of the interval P1 – P2

(C4)  taken to be the midpoint of the interval P3 – P4.

 

  (D02.3c) Plot  (in ) vs  (in hours) for the two cases (C3 and C4) for CME-4 at points P5,
P6, P7, and P8 (marking your graph as “D02.3c”). On the same graph, draw smooth
curves of  for the two cases mentioned above. For this part, take the range of the 

 axis from 0 to 180 hr.

[10]

  (D02.3d) Using the graph, estimate the absolute difference, , between the actual arrival time
of CME-4 at the Earth and its time of arrival predicted by the drag-only model, for each
of the cases C3 and C4.

[4]

  (D02.3e) Indicate whether the following statement is TRUE or FALSE by ticking ( ) the
appropriate box in the Summary Answersheet (no written justification needed):

“The drag forces exerted by the solar wind on CMEs become dominant for CME-3 at an
earlier time compared to CME-4".

[1]

(D02.4) Consider drag as the dominant force acting on 10 CMEs in part D02.1. Assume that the “drag-
only" model is applicable from and beyond the surface of the Sun (  1  ), for all CMEs.
Estimate and tabulate the solar wind speed  in km  s−1 for each CME. Further, estimate the
average solar wind speed  for all 10 CMEs.

[7]
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