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(T01) Daksha Mission [10 marks]

“Daksha” is a proposed Indian mission consisting of two satellites S1 and S2 orbiting the Earth
in the same circular orbit of radius r = 7000 km but with 180◦ phase difference. These satellites
observe the universe in high energy domain (X-rays and γ-rays). Each of the satellites of Daksha
uses several flat, rectangular detectors.

To understand how to localize a source in the sky, we shall use a simplified model of the Daksha
mission. Assume that S1 has only two identical detectors D1 and D2, each of area A = 0.50m2,
attached to an opaque mount M as shown in the figure below. The detectors lie symmetrically
around the y axis in planes perpendicular to the x-y plane and make an angle α = 120◦ with each
other.

(T01.1) 5When observing a distant source located in the x-y plane, detector D1 records a power
P1 = 2.70× 10−10 J s−1 and detector D2 records a power P2 = 4.70× 10−10 J s−1.

Estimate the angle η made by the position vector of the source with the positive y-axis,
with counter-clockwise angle from the positive y axis being considered positive.

Solution:

Since the two detectors make an angle with each other, photons from the source will
not be incident on the detectors at the same angle. Using this the source can localized.

Let n̂1 be the unit vector perpendicular to the plane of D1 and n̂2 be the unit vector
perpendicular to the plane of D2. We have,

n̂1 =
1

2
x̂+

√
3

2
ŷ 0.5

n̂2 = −1

2
x̂+

√
3

2
ŷ 0.5

Let ŝ = sxx̂+ syŷ be the unit vector in the direction of the source and F be the flux
of the source. The effective area of capture for a detector will be

Aeff = A(|ŝ · n̂|) 0.5

Hence, the power received is,

P = AF (|ŝ · n̂|) 1.0

and therefore,

P1 = AF (|ŝ · n̂1|)
P2 = AF (|ŝ · n̂2|)
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Hence,

ŝ · n̂1 =
1

2
sx +

√
3

2
sy =

2.70× 10−10

AF

ŝ · n̂2 = −1

2
sx +

√
3

2
sy =

4.70× 10−10

AF
Solving,

sx = −2.00× 10−10

AF
0.5

sy =
7.40× 10−10

√
3AF

0.5

Hence, the angle the direction vector makes with respect to the positive y-axis is

η = tan−1

(
−sx
sy

)
1.0

Then, η = 25.1◦ = 0.438 rad . 0.5

Half credit lower limit Full credit range Half credit upper limit

– 24.9 to 25.3 –

The sign on η carries 0.5 marks.

Consider a single pulse from a distant source (not necessarily in the x-y plane) recorded by both
satellites (S1 and S2) of Daksha. The times of the peaks of the pulses recorded by S1 and S2 are
t1 and t2, respectively.

(T01.2) 5If t1− t2 was measured to be 10.0±0.1ms then determine the fraction, f , of the celestial
sphere where the source might lie.

Solution:

The time delay occurs because the satellites S1 and S2 are located at different dis-
tances from the source. Light takes longer time to reach the satellite that is farther
(here, say S1). Let ∆t = t1 − t2.
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If the direction of the source makes an angle θ (see the figure above) with the line
joining telescopes S1 and S2 we have the path difference (∆d) given as,

∆d = c∆t 0.5

From the figure above the path difference can be written as,

∆d = 2r cos θ 1.0

Therefore,

cos θ =
c∆t

2r
Since the measurement of ∆t has some uncertainty, that is ∆t ∈ [9.9, 10.1]ms, we get
a range [θ1, θ2] for the possible values of θ.

θ1 = cos−1

(
c(10.1ms)

2r

)
= 77.51◦ 0.5

θ2 = cos−1

(
c(9.9ms)

2r

)
= 77.76◦ 0.5

The source may lie anywhere in the annulus bounded by the red and blue circles on
the unit sphere above, whose area is given by

2π(cos θ1 − cos θ2) 1.5

Hence the fraction of sky where the source might lie is

f =
1

2
(cos θ1 − cos θ2) 0.5

f = 2.13× 10−3 0.5

Half credit lower limit Full credit range Half credit upper limit

– 2.12× 10−3 to 2.15× 10−3 –
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(T02) Makar-Sankranti [10 marks]

The festival of “Makar-Sankranti” is celebrated in India when the Sun appears to enter the zodiacal
region of Capricorn (Makar = Capricorn, Sankranti = Entry) as seen from the Earth. It is currently
celebrated around 14 January every year. Many years ago this festival also coincided with the
Winter Solstice in the northern hemisphere which we assume to take place on 21 December.

(T02.1) 3Based on the information above, find the year, yc, when the celebration of this festival
last coincided with the Winter Solstice in the northern hemisphere.

Solution:

It is given that currently the Winter Solstice happens on 21 December which is 24
days before the Sun’s entry in Capricorn, on 14 January. 0.5

The Sun moves 360◦/365.2564 d = 0.9856◦ along the Ecliptic, per day.
This corresponds to an angular shift of 0.9856◦ × 24 = 23.6544◦ from the Vernal
Equinox to entry in Capricorn. 1.0

The Vernal Equinox precesses at a rate of 1◦ every 71.6 years (given in the Data
Sheet) in the direction of decreasing RA.
Hence, to cover 23.6544◦ it will need ≈ 1694 yr. 1.0

Hence, the celebration of this festival last coincided with the Winter Solstice in the
year 2025− 1694 = 331.

yc= 331CE 0.5

Length of year taken as 365 days: full credit.

Approximate motion of Sun taken as 1◦ per day: full credit.

Half credit lower limit Full credit range Half credit upper limit

300CE to 340CE

(T02.2) 3If the Sun appeared to enter the zodiacal region of Capricorn at a local time of 11:50:13 hrs
on 14 January 2006 in Mumbai, calculate the date, Denter, and local time, tenter, of its
entry in Capricorn in the year 2013.

Solution:

We need to consider the sidereal year which is 365 d 6 h 9min 13 s. Accounting for two
leap years (2008 and 2012) in this interval, the date and time of entry in Capricorn
will be as follows: 1.0

Year Time of Entry Date

2006 11:50:13 14

2007 17:59:26 14

2008 00:08:39 15

2009 06:17:52 14

Year Time of Entry Date

2010 12:27:05 14

2011 18:36:18 14

2012 00:45:31 15

2013 06:54:44 14

Hence, in the year 2013, the Sun enters Capricorn on

Denter = 14 January 1.0

tenter = 06:54:44 hrs. 1.0

Error in min or sec in final answer for tenter: penalty of 0.5

(T02.3) 4Makar-Sankranti festival is celebrated at a given place on the day of the first sunset in
the zodiacal region of Capricorn. You may assume that the local sunset time for Mumbai
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in January is 18:30:00 hrs.

Indicate the date of celebration of the festival on every year between 2006 and 2013 (by
ticking (✓) the respective box in the table given in the Summary Answersheet).

Solution:

Using the table in earlier part:

• Shift forward by one day due to crossing midnight - 2008

• Shift back by one day due to leap year - 2009

• Shift forward by one day due to sunset time - 2011

• Shift back by one day due to leap year - 2013

Year
14
Jan

15
Jan

16
Jan

Year
14
Jan

15
Jan

16
Jan

2006 ✓ 2010 ✓

2007 ✓ 2011 ✓

2008 ✓ 2012 ✓

2009 ✓ 2013 ✓

4.0

• Each correct tick (✓): 0.5 marks.

• No marks if cell is left black.
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(T03) Gravitational Waves [15 marks]

Orbiting binary black holes generate gravitational waves. Consider two black holes, in our Galaxy
with masses M = 36M⊙ and m = 29M⊙, revolving in circular orbits with orbital angular fre-
quency ω around their centre of mass.

(T03.1) 5Assuming Newtonian gravity, derive an expression for the angular frequency, ωini, of the
black hole orbits at a time, tini, when the separation between the black holes was 4.0
times the sum of their Schwarzschild radii, in terms of onlyM , m, and physical constants.

Calculate the value of ωini (in rad s−1).

Solution:

Assuming Newtonian gravity, for black hole masses M and m at distances R and r,
respectively, from their centre of mass,

ω2r =
GM

(R+ r)2

ω =

[
GM

r(R+ r)2

]1/2
1.0

Since MR = mr, we can rewrite this as

ω =

[
G(M +m)

(R+ r)3

]1/2
1.0

Let Rs and rs be the respective Schwarzschild radii of the black holes of mass M and
m. Expressing the separation (r +R) = 4.0× (rs +Rs) at tini, we obtain,

ωini =

[
G(M +m)

43(Rs + rs)3

]1/2
=

[
c6G(M +m)

8× 43G3(M +m)3

]1/2
=

c3

16
√
2G(M +m)

ωini =
c3

16
√
2G(M +m)

2.0

Substituting the values of the masses,

value of ωini = 1.4× 102 rad s−1 . 1.0

Half credit lower limit Full credit range Half credit upper limit

130 rad s−1 136 rad s−1 to 140 rad s−1 —

• If constants are taken as given in table, answer is 138.084 rad s−1.

• If constants are taken up to 2 significant digits, answer is 136.996 rad s−1.

• if constants are taken up to 1 significant digit, answer is 131.126 rad s−1.

(T03.2) 4In general relativity, black holes in orbit emit gravitational waves with frequency fGW,
such that 2πfGW = ωGW = 2ω. This shrinks the black hole orbits, which in turn increases
fGW. The rate of change of fGW is

dfGW

dt
=

96π8/3

5
G5/3cβMchirp

α/3f
δ/3
GW,

where Mchirp =
(mM)3/5

(m+M)1/5
is called the “chirp mass”.

Find the values of α, β and δ.
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Solution:

We use dimensional analysis to calculate the exponents in the above equation.

The dimension of Mchirp is [M].

The dimensions of the left and right hand sides of the equation are

[T]−2 = [T]−δ/3
(
[L]3[T]−2[M]−1

)5/3 (
[L][T]−1

)β
[M]α/3 1.0

Equating the dimensions for T, L, and M, we get

−2 = −δ

3
− 10

3
− β

0 = 5 + β

0 =
α

3
− 5

3
,

respectively. Solving, we get α = 5, β = −5 and δ = 11 . 3.0

If any parameter values are incorrect,

• 1.0 mark for the correct equation only if it is written explicitly.

• 1.0 mark for every correct parameter value.

(T03.3) 6Assume that the gravitational waves associated with the event were first detected at time
tini = 0.

Derive an expression for the observed time of black hole merger, tmerge, when fGW be-
comes very large, in terms of ωini, Mchirp, and physical constants only.
Calculate the value of tmerge(in seconds).

Solution:

From (T03.2), we get

dfGW

dt
=

96π8/3

5

G5/3

c5
Mchirp

5/3f
11/3
GW . 1.0

Integrating the equation for fGW, we obtain∫ ∞

ωini/π
f
−11/3
GW dfGW =

∫ tmerge

0

96π8/3

5

G5/3

c5
Mchirp

5/3dt 1.0

−3

8
f
−8/3
GW

∣∣∣∣∞
ωini/π

=
96π8/3

5

G5/3

c5
Mchirp

5/3tmerge 1.0

tmerge =
3

8

[ωini

π

]−8/3 5

96π8/3

c5

G5/3

1

Mchirp
5/3

=
5

256
ω
−8/3
ini

c5

(GMchirp)5/3
.

tmerge =
5

256
ω
−8/3
ini

c5

(GMchirp)5/3
1.0

Answer with correct exponents, but wrong coefficients gets 1.0 mark.

We calculate Mchirp =
(mM)3/5

(m+M)1/5
= 28M⊙. 1.0

Substituting the values of Mchirp, and ωini we get the
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value of tmerge = 0.10 s. 1.0

Half credit lower limit Full credit range Half credit upper limit

– 0.090 s to 0.110 s –
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(T04) Balmer Decrement [15 marks]

Consider a main sequence star surrounded by a nebula. The observed V-band magnitude of
the star is 11.315mag. The ionised region of nebula close to the star emits Hα and Hβ lines;
their wavelengths are 0.6563 µm and 0.4861 µm, respectively. The theoretically predicted ratio
of fluxes in Hα to Hβ lines is fHα/fHβ = 2.86. However, when this radiation passes through
the outer portion of the cold dusty nebula, the observed emission fluxes of Hα and Hβ lines are
6.80× 10−15Wm−2 and 1.06× 10−15Wm−2, respectively.

The extinction Aλ is a function of wavelength and is expressed as

Aλ = κ(λ)E(B − V ).

Here, κ(λ) is the extinction curve and E(B − V ) denotes the colour excess in the filter bands B
and V. The extinction curve (with λ in µm) is given as follows.

κ(λ) =

{
2.659×

(
−1.857 + 1.040

λ

)
+RV , 0.63 ≤ λ ≤ 2.20

2.659×
(
−2.156 + 1.509

λ − 0.198
λ2 + 0.011

λ3

)
+RV , 0.12 ≤ λ < 0.63

where, RV = AV /E(B − V ) = 3.1 is the ratio of total-to-selective extinction.

(T04.1) 3Find the values of κ(Hα) and κ(Hβ).

Solution:

For Hα substituting in equation for κ(λ), we get

κ(Hα) = 2.659×
(
−1.857 +

1.040

0.6563

)
+ 3.1

κ(Hα) = 2.4 1.5

Similarly, for Hβ we have

κ(Hβ) = 2.659×
(
−2.156 +

1.509

0.4861
− 0.198

0.48612
+

0.011

0.48613

)
+ 3.1

κ(Hβ) = 3.6 1.5

For κ(Hβ)

Half credit lower limit Full credit range Half credit upper limit

3.6 to 3.7

(T04.2) 4Find the value of the ratio of colour excess
E(Hβ −Hα)

E(B − V )
.

Solution:

E(Hβ −Hα) = AHβ −AHα 2.0

= [κ(Hβ)− κ(Hα)]E(B − V ) = 1.270E(B − V )

E(Hβ −Hα)

E(B − V )
= 1.2 2.0

Credit of only 2.0 marks if answer is given without showing earlier expression relating color excess

E(Hβ − Hα) to extinction A.

Half credit lower limit Full credit range Half credit upper limit

1.2 to 1.3
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(T04.3) 6Estimate the extinction due to nebula, AHα and AHβ, at Hα and Hβ wavelengths, re-
spectively.

Solution:

If fλ, obs and fλ, em represent the observed and emitted fluxes at wavelength λ, re-
spectively, then the extinction is given by the equation

Aλ = −2.5 log

(
fλ, obs
fλ, em

)
1.0

Given,
fHα, em

fHβ, em
= 2.86

E(Hβ −Hα) = AHβ −AHα

= −2.5 log

(
fHβ, obs

fHα, obs
×

fHα, em

fHβ, em

)
= −2.5 log

(
1.06× 10−15

6.80× 10−15
× 2.86

)
= 0.88 1.5

From extinction curve, we have E(Hβ −Hα) = 1.2E(B − V ).
Equating these two, we obtain

E(B − V ) =
0.88

1.2
= 0.73 0.5

This gives,

AHα = κ(Hα)E(B − V ) = 2.4× 0.73

AHα = 1.8mag 1.5

AHβ = κ(Hβ)E(B − V ) = 3.6× 0.73

AHβ = 2.6mag 1.5

Full credit for E(B − V ) between 0.69 - 0.73, no credit outside this range. Other values do not

change when rounded to 2 significant digits.

For AHα

Half credit lower limit Full credit range Half credit upper limit

1.6 to 1.8

For AHβ

Half credit lower limit Full credit range Half credit upper limit

2.5 to 2.6

(T04.4) 2Estimate the extinction of the nebula (AV ) and the apparent magnitude of the star in
the V band, mV0, in the absence of the nebula.

Solution:

AV = 3.1× E(B − V ) = 3.1× 0.69

AV = 2.3mag 1.0

mV0 = mV −AV = 11.315− 2.3

mV0 = 9.0mag 1.0
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For AV

Half credit lower limit Full credit range Half credit upper limit

2.1 mag to 2.3 mag

For mV0

Half credit lower limit Full credit range Half credit upper limit

9.0 mag to 9.2 mag
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(T05) Quasars [20 marks]

A quasar is an extremely luminous active galaxy powered by a supermassive black hole that emits
relativistic jets. The figure shows a series of panels of radio images of a quasar (with redshift
z = 0.53, and luminosity distance DL = 1.00× 1010 ly) at different times. The “core” aligns with
the vertical white line, while a jet, consisting of a “blob” (marked white +), moves away from it
over time. Each panel shows the observation time (starting with T0 for the first image), and the
angular scale is indicated at the top and bottom of the figure.

(T05.1) 5Determine the blob’s angular separation, ϕblob (in milliarcsecond), and its transverse
distance, lblob (in light-year), from the quasar core for each observation. Then, calculate
the blob’s apparent velocity in the transverse direction (vapp) as a fraction of light speed,
βapp (= vapp/c) by using consecutive observations. Also calculate the average apparent
velocity βave

app over the entire observation period.

Solution:

Angular diameter distance = DL/(1 + z)2

Scale = Angular diameter distance× π

60× 60× 180
ly/arcsecond

= 20.7 lymilliarcsecond−1. 1.0

Date of
observation

ϕblob

(milliarcsecond)
lblob (ly) βapp

T0 1.6 33 ×
T0 + 605 d 2.1 44 6.6

T0 + 1186 d 2.3 48 2.5

T0 + 1786 d 2.8 58 6.1

T0 + 2338 d 3.1 64 4.0

3.0



Theory Examination
Page 13 of 59

All ϕblob entries are correct 1.0

3-4 ϕblob entries are correct 0.5

Similar marking for lblob and βapp, but without double penalty

Tolerance in each ϕblob is ±0.1 milliarcsecond.

Tolerance in each lblob is ±2 ly.

Tolerance in each βapp is ±1.2

The average apparent velocity can be calculated by using the distance and time
between the first and the last point which yields βave

app = 4.8 .

Half credit lower limit Full credit range Half credit upper limit

3.6 to 6.4

The quasar jet actually moves at a relativistic speed v ≡ βc, but not necessarily in the plane of
the sky; e.g., it makes an angle θ (the “viewing angle”) with respect to the line of sight of a distant
observer (indicated by the dashed lines), as shown in the sketch below.
For this and all subsequent parts, ignore redshift of the quasar and any relativistic effects.

(T05.2) The light emitted by the blob at two different times t0 (corresponding to position A) and
t0 + ∆t (corresponding to position B) reaches the observer at tA and tB, respectively.
Thus the observed time difference is ∆tapp = tB − tA.

(T05.2a) 2Find an expression for the ratio
∆tapp
∆t

in terms of β and θ.

Solution:
Radiation from the core always takes the same time to reach us, but the
time taken by radiation from the moving blob in the jet decreases since its
distance from us reduces.
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As shown in the sketch above, a signal emitted from the moving blob at B
covers a distance (βc)∆t cos θ less than a signal emitted at A.
Thus the apparent time difference between the light received by the observer
is

∆tapp = tB − tA =

[
t0 +∆t− (βc)∆t cos θ

c

]
− t0

= ∆t(1− β cos θ)

=⇒ ∆tapp
∆t

= (1− β cos θ) . 2.0

In case the answer is incorrect but the diagram has the correct entries for the sides of

the relevant triangle (i.e., components of βc∆t), then we give 1 mark as partial credit.

(T05.2b) 2Using this ratio, express βapp in terms of β and θ.

Solution:
The apparent velocity on the sky is

βapp =
vapp
c

=
β ∆t sin θ

∆tapp

βapp =
β sin θ

1− β cos θ
2.0

The resulting formula indicates that the measured apparent velocity of the
jet’s component is increased for relativistic features and can be higher than
speed of light for small values of angle θ.

(T05.3) Motion is called superluminal if the apparent speed exceeds that of light (βapp > 1), and
subluminal if it does not (βapp < 1).

(T05.3a) 4For βapp = 1, plot a smooth curve of β as a function of θ to mark the boundary
between subluminal and superluminal motions. Shade the superluminal region
in the graph with slanted lines ( ).

Solution:
For βapp = 1, we obtain

β(sin θ + cos θ) = 1 =⇒ β =
1

sin θ + cos θ
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Superluminal motion occurs if βapp > 1; then

β(sin θ + cos θ) > 1.

This defines the superluminal region which is to be shaded.

Correct values at each of 15◦, 30◦, 45◦, 60◦ and 75◦ 2.5

Curve is overall smooth and symmetric 0.5

Correct region is shaded 1.0

(T05.3b) 2Find the lowest true jet speed (βlow = vlow/c) for the superluminal motion to
occur and also its corresponding viewing angle θlow.

Solution:
It may be seen from graph drawn in (T05.3a) that the minimum value of β
for which superluminal motion is apparent occurs at θ = 45◦, i.e., β = 1/

√
2.

βlow = 1/
√
2 ≈ 0.707 , and 1.0

the corresponding orientation angle, θlow= 45◦ 1.0

(T05.4) 2Find an expression for the maximum viewing angle, θmax, for which a given value of βapp
will be possible.

Solution:

We know

βapp =
β sin θ

1− β cos θ
Thus

β

(
sin θ + βapp cos θ

βapp

)
= 1
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Since β ≤ 1, we have

sin θ + βapp cos θ

βapp
> 1 1.0

or

βapp tan(θ/2) < 1.

Therefore, the maximum viewing angle for a jet with a given βapp is

θmax = 2 tan−1

[
1

βapp

]
1.0

The core of a quasar, its central compact object, exhibits variability in its emission due to internal
processes occurring within a causally connected region. The size (= radius) of this region is
typically taken to be about five times the Schwarzschild radius of the core.

(T05.5) 3The core of a certain quasar is found to vary on time scales of about 1 h. Obtain an
upper limit, Mc,max, on the mass of the central compact object, in units of solar mass.

Solution:

Time-scale δt of any substantial variability from a source cannot be shorter than the
light crossing time of the source.

This then gives an upper limit to the size ≲ c δt, where c is the speed of light.

Therefore,

cδt ≳ 5RSC = 5× 2GM

c2
. 1.0

where, M is the mass of the central compact object

Rearranging,

M ≲
c3δt

10G
Thus, upper limit on the mass of central compact core of quasar

Mc,max =
c3δt

10G
1.0

=
(2.998× 108)3 × 3600

10× 6.674× 10−11
kg = 7.311× 107M⊙

Mc,max = 7× 107M⊙ 1.0



Theory Examination
Page 17 of 59

(T06) Galactic Rotation [20 marks]

The rotation curve of our Galaxy is determined using line-of-sight velocity measurements of neutral
hydrogen (HI) clouds along various Galactic longitudes, observed through the 21 cm HI line.
Consider an HI cloud with Galactic longitude l, located at a distance R from the Galactic Centre
(GC) and a distance D from the Sun. Consider Sun to be at a distance R0 = 8.5 kpc from the GC.
Assume that both the Sun and the HI cloud are in circular orbits around the GC in the Galactic
plane, with angular velocities Ω0 and Ω, and rotational velocities V0 and V , respectively.

The line-of-sight velocity (Vr) and transverse velocity (Vt) components of the cloud, as observed
from the Sun, can be expressed as

Vr = (Ω− Ω0)R0 sin l

Vt = (Ω− Ω0)R0 cos l − ΩD

Seen from the North Galactic Pole, the Galactic rotation is clockwise. Throughout this problem,
we shall take line-of-sight velocity to be positive when receding and clouds will be treated as point
objects.

(T06.1) 5In the graph provided on the Summary Answersheet, sketch Vr as a function of D from
D = 0 to D = 2R0 for two lines of sight defined by (i) l = 45◦ and (ii) l = 135◦. Label
each of your lines/curves with the value of l.

Solution:

The concept of differential rotation of the Galaxy is used here.

• For l = 45◦:

– From Sun to the GC, the quantity (Ω − Ω0) increases, which implies Vr

increases.
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– As shown in the figure, the line of sight intersects circular orbits that are
at varying distances from the GC.

– The line of sight is closest to the GC when D = R0 cos l = 6.01 kpc. Vr

reaches the maximum value here.

– Beyond this, (Ω− Ω0) decreases implying Vr decreases.

– Vr = 0 when the line of sight intersects the Sun’s orbit. Here, D =
2R0 cos l = 12.02 kpc

– Beyond the Sun’s orbit, Ω < Ω0. Vr is negative and its magnitude in-
creases with increasing D.

• l = 135◦

– The line of sight lies outside the Sun’s orbit. Here, Vr is negative, there is
no peak, and its magnitude increases with increasing D.

The plot of the line-of-sight velocity as a function of the distance from the Sun for
two values of l is as follows:

For l = 45◦:

Starts at (0,0) 0.5

Has one and only one positive maximum 0.5

Maximum is at D = 6kpc 0.5

Has a zero crossing at D = 12 kpc 1.0

Is negative throughout beyond zero crossing 0.5
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Is smooth throughout 0.5

For l = 135◦:

Starts at (0,0) 0.5

Is negative throughout without any maxima/minima 0.5

Is smooth throughout 0.5

(T06.2) 3The graph below shows the average radial (solid, red curve) and transverse (dashed, blue
curve) velocity components of stars at a distance of 100 pc from the Sun, plotted as a
function of Galactic longitude.

Using the graph, estimate the Sun’s orbital period (P ) around the GC in mega-years
(Myr).

Solution:

Consider l = 90,
Vr = 0 implying Ω = Ω0 0.5
Vt = −Ω0D = −2.75 km s−1 0.5
Ω0 = 8.91× 10−16 rad s−1 1.0

P =
2π

Ω0
= 224Myr 1.0

Expression of Vr for a chosen l 0.5

Expression of Vt for a chosen l 0.5

Calculation of Ω0 for a chosen l (acceptable range 8.8 to 9.1× 10−16 rad s−1) 1.0

Calculation of P for a chosen l 1.0

Half credit lower limit Full credit range Half credit upper limit

218Myr to 228Myr

(T06.3) Jan Oort noted that in the solar neighbourhood (D ≪ R0), the difference in angular ve-
locities (Ω−Ω0) will be small, and hence, derived the following first order approximation
for the line-of-sight and the transverse velocity components:

Vr = AD sin 2l

Vt = AD cos 2l +BD

where A and B are known as Oort’s constants.

Let us consider two cases:
(I) the actual observed rotation curve of the Galaxy, and
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(II) the rotation curve is for a hypothetical scenario where the Galaxy is devoid of dark
matter and the whole mass of the Galaxy is assumed to be concentrated at its centre.

(T06.3a) 2Derive expressions for the radial gradient of the rotational velocity at the loca-

tion of the Sun,
dV

dR

∣∣∣∣
R=R0

, for the two cases.

Solution:

(I) The observed rotation curve is flat near the Sun.

V is constant → dV

dR

∣∣∣∣
R=R0

= 0 . 1.0

(II) If the whole mass of the Galaxy is assumed to be concentrated at
the centre, then we consider Keplerian motion.

V =

√
GM

R
→ dV

dR

∣∣∣∣
R=R0

= −1

2

V0

R0
. 1.0

(T06.3b) 8Express A and B in terms of V0, R0, and the radial gradient of rotational

velocity at the location of the Sun,
dV

dR

∣∣∣∣
R=R0

.

Solution:
In the solar neighbourhood, (Ω−Ω0) will be very small. Using the approx-
imation

f(x) ≃ f(x0) +
df

dx

∣∣∣∣
x=x0

(x− x0), for x ≈ x0, given in the Data Sheet,

(Ω− Ω0) =
dΩ

dR

∣∣∣∣
R=R0

(R−R0) 2.0

=

[(
1

R

dV

dR

)∣∣∣∣
R=R0

−
(

1

R2
V

)∣∣∣∣
R=R0

]
(R−R0)

=
1

R2
0

[
R0

dV

dR

∣∣∣∣
R=R0

− V0

]
(R−R0)

Thus the line-of-sight velocity expression becomes

Vr =
1

R2
0

[
R0

dV

dR

∣∣∣∣
R=R0

− V0

]
(R−R0)R0 sin l

Further, in the solar neighbourhood, D ≪ R0. So we can approximate

(R−R0) ≈ −D cos l 1.0

Thus, the line-of-sight velocity can be expressed as,

Vr =
1

R2
0

[
R0

dV

dR

∣∣∣∣
R=R0

− V0

]
(−D cos l)R0 sin l

=
1

2

[
V0

R0
− dV

dR

∣∣∣∣
R=R0

]
D sin 2l

Comparing with Vr = AD sin 2l, we get

A =
1

2

[
V0

R0
− dV

dR

∣∣∣∣
R=R0

]
2.0
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Also, in the solar neighbourhood, ΩD ≈ Ω0D. Using this approximation
and (R−R0) ≈ −D cos l, the tangential velocity is 1.0

Vt = (Ω− Ω0)R0 cos l − ΩD

=
1

R2
0

[
R0

dV

dR

∣∣∣∣
R=R0

− V0

]
(−D cos l)R0 cos l − Ω0D

=

[
V0

R0
− dV

dR

∣∣∣∣
R=R0

]
D cos2 l − Ω0D

=
1

2

[
V0

R0
− dV

dR

∣∣∣∣
R=R0

]
D(1 + cos 2l)− V0

R0
D

= AD cos 2l +
1

2

[
V0

R0
− dV

dR

∣∣∣∣
R=R0

]
D − V0

R0
D

= AD cos 2l − 1

2

[
V0

R0
+

dV

dR

∣∣∣∣
R=R0

]
D

Comparing with Vt = AD cos 2l +BD, we get

B = −1

2

[
V0

R0
+

dV

dR

∣∣∣∣
R=R0

]
2.0

Main credit points:

(Ω− Ω0) first order approximation in terms of Taylor series 2.0

(R−R0) ≈ −D cos l approximation 1.0

ΩD ≈ Ω0D approximation 1.0

Working through to arrive at correct expression for A 2.0

Working through to arrive at correct expression for B 2.0

(T06.3c) 2The ratio (A/B) of Oort’s constants for the two given cases, (I) and (II), are
defined as FI and FII, respectively. Determine FI and FII.

Solution:

For a flat rotation curve

(
dV

dR
= 0

)
, FI = −1 . 1.0

For Keplerian rotation

(
dV

dR
= −1

2

V

R

)
, FII = −3 . 1.0
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(T07) Neutron Star Binary [20 marks]

In a binary system involving a compact star, where the companion star does not overflow its Roche
lobe, the primary source of accretion for the compact star is the stellar wind from the companion
star. This wind-fed accretion is especially significant in systems that include an early-type star
(such as an O or B star, indicated henceforth as an OB star), alongside a compact object like a
neutron star (NS) in a close orbit.

Consider such a NS-OB star binary system where a neutron star of mass MNS = 2.0M⊙ and
radius RNS = 11 km is orbiting in a circular orbit of radius a around the centre of the OB star
with velocity vorb = 1.5 × 105ms−1 (see figure below). Throughout this problem the mass loss
from the OB star is assumed to be spherically symmetric and its rate is ṀOB = 1.0×10−4M⊙ yr−1.

(T07.1) 3The accretion radius, Racc, is defined as the maximum distance from the NS at which the
stellar wind can be captured by the NS. If the stellar wind speed at the orbital distance
of the NS is vw = 3.0 × 106ms−1, find Racc for the above system in km using standard
escape velocity calculations.

Solution:

The accretion radius can be estimated by equating the gravitational potential energy
of the stellar wind to its kinetic energy

1

2
ρwv

2
rel =

GMNSρw
Racc

0.5

=⇒ Racc =
2GMNS

v2rel
0.5

where, ρw is the wind density and vrel is the relative velocity of the wind.

For the case considered above,

v2rel = v2w + v2orb
Here, vw ≫ vorb, therefore, v

2
rel ≈ v2w = 9× 1012m2 s−2. 1.0

which gives,

Racc =
2× 6.674× 10−11 × 2.0× 1.988× 1030

9× 1012
m

Racc = 5.9× 104 km 1.0

(T07.2) 3Assuming that all captured material is accreted by the NS, estimate the mass accretion
rate, Ṁacc, from the stellar wind onto the NS in units of M⊙ yr−1 if a = 0.5 au. Neglect
the effects of radiation pressure and finite cooling time of the accreting gas.
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Solution:

In the case of spherically symmetric mass loss from the companion and vw ≫ vorb,
the companion mass loss is

ṀOB = 4πa2ρwvw 1.0

where a = 0.5 au = 7.480× 1010m is the orbital separation.

Mass accretion rate on the compact object is

Ṁacc ≈ πR2
acc ρw vrel 1.0

Also here, since vw ≫ vorb, vrel ≈ vw This implies,

Ṁacc ≈

(
ṀOB

4

)(
Racc

a

)2

≈ 9.74× 1011 kg s−1

=⇒ Ṁacc ≈ 1.6× 10−11M⊙ yr−1 1.0

If the student does not use the approximation for speed, then he will get 9.75× 1011 kg s−1, but

the final answer is same for required significant digits. No marks should be deducted if this is the

case.

(T07.3) 6Now consider the situation where the stellar wind speed at the orbital distance a (near
the NS) becomes comparable with orbital speed of the NS. The mass accretion rate from
the stellar wind onto the NS in this case would be given by an expression of the form
Ṁacc = ṀOBf(tanβ, q), where q = MNS/MOB is the mass ratio of the binary and β is
the angle in the frame of the NS between the wind velocity direction and radial direction
away from the OB star. Obtain the expression for f(tanβ, q) assuming MOB ≫ MNS.

Solution:

The orbital speed of the NS in the frame corresponding to the center of OB star
(assuming the star is stationary) is given by

v2orb =
GMOB

a
1.0

Using vector algebra we get tanβ = vorb/vw. 1.0

Now, the ratio of the mass accretion rate to that of mass loss rate from the star

Ṁacc

ṀOB

∼ πR2
accρwvrel

4πa2ρwvw

=
1

4

(
Racc

a

)2
√

v2orb + v2w
v2w

=
1

4

(
Racc

a

)2√
1 + tan2 β 1.0

To find the expression of the ratio of the two radii, Racc and orbital separation a,

Racc

a
=

2GMNS

v2rel

1

a
=

2GMOB q

v2rel

1

a
=

2v2orb
v2rel

q 1.0

=

(
2 tan2 β

1 + tan2 β

)
q 1.0

On substituting and simplifying, we can express,

=⇒ f(tanβ, q) = q2
(

tan4 β

(1 + tan2 β)3/2

)
1.0

(T07.4) Consider that the fully ionized material accretes radially and is hindered by the strong
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magnetic field B⃗ of the NS. The pressure exerted by the magnetic field is given by B2

2µ0
. We

shall assume that the NS has a dipole magnetic field whose magnitude in the equatorial
plane varies with the distance r from the NS for r ≫ RNS as

B(r) = B0

(
RNS

r

)3

where B0 is the magnetic field at the equator of the NS. Assume that the axis of the
magnetic dipole aligns with the rotation axis of the NS.

(T07.4a) 1Obtain the magnetic pressure, Peq,mag, in the equatorial plane in terms of B0,
RNS, r, and other suitable constants.

Solution:
The magnetic pressure Pmag = B2/2µ0 increases rapidly towards the NS
magnetic poles.

=⇒ Peq,mag =
B2

0R
6
NS

2µ0r6
1.0

(T07.4b) 7The maximum distance where the accretion flow is stopped by the magnetic field
at the equatorial plane is called the magnetospheric radius Rm. This flow of
matter will exert a pressure due to the relative motion between incoming stellar
wind and the NS. Obtain an approximate expression for the critical magnetic
field B0, c for which Rm coincides with Racc and calculate its value in Tesla.
Magnetic effects are neglected for r > Rm and consider vw ≫ vorb.

Solution:
The critical magnetic field B0, c can be obtained by equating pressure due
to incoming wind with the Peq,mag at r = Racc. 1.0
The pressure due to incoming wind at r = Racc is given by

ρwv
2
rel ∼ ρwv

2
w 1.0

If the student writes the pressure due to incoming wind as dynamic pressure, i.e.,
1
2ρwv

2
rel ∼ 1

2ρwv
2
w, 0.5 credit will be given.

From part (T07.2), one can obtain the expression for ρw as follows:

ρw =
Ṁacc

πR2
accvw

=
ṀOB

4πa2vw
1.0

If the student writes the density of wind as Ṁacc

4πR2
accvw

, 0.5 credit will be given.

Now equating the pressures due to wind and magnetic field, we have:

B2
0, cR

6
NS

2µ0R6
acc

=
Ṁacc

πR2
acc

(
2GMNS

Racc

)1/2

1.0

which gives the value of the critical magnetic field as

=⇒ B0, c =

(
2µ0Ṁacc

√
2GMNS

πR6
NS

)1/2

R7/4
acc 1.0

No credit will be given if the expression has wrong exponent, or is missing a constant

quantity.
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Now putting the values we get

=⇒ B0, c ≈ 4.0× 109T 2.0
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(T08) Shadow of a black hole [20 marks]

The Event Horizon Telescope (EHT) has released an image of the supermassive black hole at the
centre of the M87 galaxy as shown in the left panel of the figure below.

To understand some simple features of this image, we will consider a simplified model of a non-
rotating, static, spherically symmetric black hole of mass M = 6.5 × 109M⊙, surrounded by a
massless, thin, planar accretion disk of inner and outer radii, ainner = 6RSC and aouter = 10RSC,
respectively, where RSC is the Schwarzschild radius. A face-on view sketch is shown in the right
panel of the figure below (figure is not to scale).

We assume that the accretion disk is the only source of light to be considered. Every point on the
disk emits light in all directions. This light travels under the influence of the gravitational field
of the black hole. The path of the light rays is governed by two equations given below (which are
similar to those of an object around the Sun):

1

2
v2r +

L2

2r2

(
1− 2GM

c2r

)
= E ; vϕ = r ω =

L

r
where r ∈ (RSC,∞) is the radial coordinate, ϕ ∈ [0, 2π) is the azimuthal angle, and E and L are
constants related to the conserved energy and conserved angular momentum, respectively.

Here vr ≡ dr/dt is the magnitude of the radial velocity, vϕ is the magnitude of the tangential
velocity, and ω ≡ dϕ/dt is the angular velocity. We define the impact parameter b for a trajectory
as b = L/

√
2E. Time dilation is neglected in this problem.

Another useful equation is obtained by differentiating the first equation:

dvr
dt

− L2

r3
+

3GML2

c2r4
= 0

(T08.1) 4Circular light trajectories can exist around the black hole. Find the radius, rph, and
impact parameter, bph, for such photon trajectories in terms of M and relevant constants.

Solution:

Circular trajectories have r = constant. Hence, the radial velocity vr = 0 1.0

and rate of change of radial component of velocity
dvr
dt

= 0. 1.0

From the third equation,

dvr
dt

− L2

r3
+

3GML2

c2r4
= 0,

we get radius rph of circular orbits to be rph = 3GM/c2 1.0

Then from the first equation, the impact parameter is found to be

bph = L/
√
2E = 3

√
3GM/c2 . 1.0

(T08.2) 2Calculate the time Tph taken for completing one full orbit of the circular light trajectory
in seconds.
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Solution:

Time taken to complete one circular orbit is

Tph = 2πrph/c = 6πGM/c3 1.0

= 6.0× 105 s 1.0

Half credit lower limit Full credit range Half credit upper limit

5.9× 105 s to 6.1× 105 s

(T08.3) The radial velocity equation given above (the first equation in this question) for light

trajectories can be compared with an equation of the form v2r
2 +Veff(r) = E. A schematic

plot of Veff/L
2 as a function of r is given below.

(T08.3a) 2The plot indicates two special radii, rα and rβ. Obtain expressions for rα and
rβ in terms of M and relevant constants.

Solution:

rα corresponds to the radius where Veff =
L2

2r2

(
1− 2GM

c2r

)
is equal to zero.

Hence rα = 2GM/c2 = RSC. 1.0

Solving for
dVeff

dr
= 0 gives rβ = 3GM/c2 = rph. 1.0

(T08.3b) 3A photon travelling inward from the accretion disk towards the black hole can
still escape out to infinity in some cases. Find the expression for the smallest
value of the turning point radius, rt, for such a photon, in terms of M and
relevant constants. Find the expression for the minimum value of the impact
parameter, bmin, for this photon.

Solution:
The radius of the position of peak of Veff(r) is the smallest possible turning
point radius rt 1.0for the light trajectory such that it can escape to infinity.
Hence, the least smallest possible turning point radius rt is same as the

radius rph of the circular orbits. rt = 3GM/c2 1.0

Since rt is equal to rph, the corresponding impact parameter is same as

calculated in part one bmin = 3
√
3GM/c2 . 1.0

(T08.4) 5A ray of light coming from a radius ractual from the centre of the system in the plane of
the sky will suffer strong bending due to the gravity of the black hole, and eventually
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reach an observer (denoted by an eye) at a large distance d from the system, as shown
below.

To this observer, the ray would appear to have originated from a different point at a
distance rapp ≈ b from the black hole centre in the plane of the sky, where b is the impact
parameter for that photon trajectory. For points on the accretion disk at r = ractual, one
may assume the following relation:

b(ractual) ≈ ractual (1 +RSC/ractual)
1/2

For the distant observer, like ourselves, with a face-on view of the accretion disk, the
image of the system will appear to be circularly symmetric in the plane of the sky.
Determine the outermost apparent radius, router, and the innermost apparent radius,
rinner, of the image in units of au.

Solution:

Since it is given that rapp ≈ b, the apparent radii rinner and router are related to the
respective impact parameters binner and bouter of the corresponding light rays.

To figure out the binner and bouter, one needs to choose the correct corresponding
ractual in each case.

The outer ring radius router would correspond to the light ray which is emitted from
the outer-edge of the accretion disk. Hence the router is determined by the formula
given router ≈ bouter ≈ aouter (1 +RSC/aouter)

1/2. 1.0

Substituting aouter = 10RSC we get router = 1.3× 103 au 1.0

Half credit lower limit Full credit range Half credit upper limit

1.2× 103 au to 1.4× 103 au

For the inner ring radius rinner, the light ray corresponding to the smallest turning
point rt is the light ray which goes closest to the BH and returns back to infinity.

Thus one should choose the impact parameter binner to be that of the circular orbit.
Then, rinner ≈ binner = bph = 3

√
3GM/c2. 2.0

Hence rinner = 3.3× 102 au . 1.0

Half credit lower limit Full credit range Half credit upper limit

3.2× 102 au to 3.4× 102 au

If a student calculates the rinner corresponding to ainner, then only 1.0 mark out of 3.0 marks

will be awarded provided the final number is within the range rinner = (8.3± 0.1)× 102 au.

(T08.5) Consider an isolated supermassive black hole of mass M = 6.5 × 109M⊙ without any
accretion disk. A brief strong burst of electromagnetic radiation occurs for 5 s at a point
Z at a distance, say, rZ = 6RSC from the black hole as shown in the figure. The burst
at point Z emits light in all directions. An observer at a point far from the black hole
(denoted by an eye in the figure below) takes a long exposure image of the region around
the black hole for 60 s.
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Choose the correct option for each of the statements below:

(T08.5a) 2The number of possible paths for light to travel from Z to the observer is
(A) At most one (B) Exactly one (C) Exactly two (D) Greater than two.

Solution:
The source is a point source.
For the image, one has to look at all the possible trajectories light that can
reach the observer starting from point Z in the same plane as the observer,
the black hole and point Z.
The shortest path is the direct path, without orbiting the black hole, con-
necting Z and the observer. This will be also be bent due to gravity. The
next shortest path could be the one which goes half around the black hole
in the anti-clockwise sense in the picture. Another one is the one with one
and half revolution around the black hole in the anti-clockwise sense in the
picture. And so on, paths with additional one more revolution around the
black hole than the previous one.
The above is also true for trajectories in clockwise sense of rotation around
the black hole. Therefore, number of possible paths for light to travel from

Z to the observer is (D) Greater than two 2.0

(T08.5b) 2The number of images of the EM burst at Z that will be seen in the long
exposure image is
(A) At most one (B) Exactly one (C) Exactly two (D) Greater than two.

Solution:
One has to consider the time difference in the arrival times due to the
different path lengths. From Part (T08.2), it takes around 6.0 × 105 sec
which is 166.7 h for light to circularly orbit the supermassive black hole
of mass M = 6.5 × 109M⊙. Hence, the difference in the arrival times
of light along these trajectories would be at least around half of 166.7 h
approximately, that is, around 83.3 h. Each of these signals would last for
only the duration of the blast, i.e., 5 s.
Since the long exposure picture is only for 60 s, either one or no image will be
captured, depending on whether the exposure time encompasses the short
window of the arrival of one of the signals and 5 s thereafter. Therefore, the

number of images in a picture would be (A) At most one . 2.0

A correct answer in this question will fetch 2.0 marks if either option (C) or option (D)

were marked in 8.5a. If the answer in 8.5a is either of (A) or (B) or is not attempted,

then a correct answer in this question fetches 1.0 mark.
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(T09) Atmospheric Seeing [35 marks]

A telescope with an achromatic convex objective lens of diameter D = 15 cm and focal length
f = 200 cm is pointed to a star at the zenith.

(T09.1) 1Find the diameter (in m), dimage, of the image of a point source as produced by the
objective lens at its focal plane for green light (λ = 550 nm), considering only the effects
of diffraction.

Solution:

Angular radius of the diffraction disk is given by
1.22λ

D
.

The radius of the image is therefore,

dimage = f

(
1.22λ

D

)
0.5

dimage = 8.95× 10−6m 0.5

We accept f

(
λ

D

)
= 7.33× 10−6 m (i.e., without the factor of 1.22 in the formula). No other

values accepted.

The image of an astronomical source is also affected by the so-called “atmospheric seeing”.

The boundaries between the layers in the atmosphere as well as the refractive indices of the layers
change continuously due to turbulence, temperature variation and other factors. This leads to tiny
changes in the position of the image in the focal plane of the telescope, known as the “twinkling
effect”. For rest of the problem, apart from the diffraction limited finite size of the image of the
star discussed above, no interference effects will be considered.

The left panel of the figure below shows a vertical cross-section of the atmosphere with multiple
layers of different refractive indices (n1, n2, n3, . . .). The right panel shows the zoomed in view of
a thin vertical segment of the atmosphere and the boundary between the two lowest atmospheric
layers of refractive indices n1 and n2 (n1 > n2). We consider only these two layers and their
boundary for this problem. The diagrams are not to scale.

(T09.2) Let the boundary between the two layers be at a height H = 1km directly above the
telescope objective, with a tilt of θ = 30◦ with respect to the horizontal plane. In all
parts of this problem θ is taken to be positive in the anti-clockwise direction. For a
monochromatic light source, n1 = 1.00027 and n2 = 1.00026. Let the angular shift in
the position of the image at the focal plane of the telescope for a star at the zenith be α.

(T09.2a) 2Draw an appropriately labelled ray-diagram at the boundary showing n1, n2, θ
and α.
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Solution:

2.0

Incident, refracted rays with arrows and normal to boundary drawn 0.5

Angle of incidence shown as θ 0.5

Angle of shift in refracted ray shown as α 0.5

Both n1 and n2 shown 0.5

(T09.2b) 2Find the expression for α in terms of θ, n1 and n2. Use the small angle approx-
imations: sinα ≈ α and cosα ≈ 1.

Solution:
Using Snell’s Law,

n2 sin θ = n1 sin(θ − α)
n2

n1
sin θ = sin θ cosα− cos θ sinα 1.0

Using small angle approximation (sinα ≈ α and cosα ≈ 1)
n2

n1
sin θ = sin θ − α cos θ

α =
sin θ

cos θ

(
1− n2

n1

)
1.0

(T09.2c) 3Calculate the displacement, ∆xθ (in m), in the position of the image if θ in-
creases by 1% (keeping n1 and n2 fixed).

Solution:
The shift in position of image due to change in θ is:

∆xθ = fα = f∆tan θ
(
1− n2

n1

)
1.0

= f

(
1− n2

n1

)
(tan(θ +∆θ)− tan θ)

= f

(
1− n2

n1

)
sec2 θ∆θ 1.0

= f × (6.98× 10−8 rad)

∆xθ = 1.40× 10−7m 1.0
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Wrong sign will have penalty of 1.0 mark.

(T09.2d) 3Calculate the displacement, ∆xn (in m), in the position of the image if n2

increases by 0.0001% (keeping n1 and θ fixed).

Solution:
Shift in the position of image due to the change in n2 is:

∆xn = f tan θ

(
−n2 +∆n2

n1
+

n2

n1

)
= −f tan θ

(
0.0001

100
× n2

n1

)
2.0

= −f × (5.77× 10−7 rad)

∆xn = −1.15× 10−6m 1.0

Wrong sign will have penalty of 1.0 mark.

(T09.3) 2For white light coming from a star at the zenith, choose which of the following most
closely describes the shape and colour of the image by ticking (✓) the appropriate box
(only one) in the Summary Answersheet. Note x increases from left to right in the figure.

Image colour Image shape Left edge Right edge

A White Circular

B White Elliptical

C Coloured Circular Blue Red

D Coloured Circular Red Blue

E Coloured Elliptical Blue Red

F Coloured Elliptical Red Blue

Solution:

Blue light has larger refractive index than the red light, hence it will bend more. So
incoming light will vary in colour from red to blue towards right.
So, the correct answer will be F . 2.0
Note: convex lens inverts image, but does not affect refractive index dependent
bending.
Options D or E get 1.0 mark.
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For all remaining parts of this question we consider monochromatic green light with λ = 550 nm.
We model the boundary between the layers as a set of infinite zigzag planes (running perpendicular
to the plane of the page) separated by d = 10 cm along x-axis, with either θ = 10◦ or θ = −10◦.

The figure below (not to scale) shows a cross-section of this model of the atmosphere of width
W (W ≪ H). For telescopes with large aperture this zigzag nature of the boundary results in
formation of speckles in the focal plane.

(T09.4) Consider an atmosphere modelled as above.

(T09.4a) 4A section of the atmosphere with consecutive zigzag planes, with same param-
eters as stated above, is shown in the diagram below (not to scale).

In this diagram, reproduced in the Summary Answersheet, draw the paths of
the incident light rays up to the plane where the telescope objective is placed,
shown by the gray dotted line.
Mark the region(s), if any, by “X” in the diagram where no light rays will reach.

Solution:
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4.0

All three sets of parallel rays drawn with correct inclinations 2.0

All rays have arrow marks 0.5

X-patch marked correctly 1.5

(T09.4b) 3Calculate the width WX of such region(s).

Solution:
Each set of planes, with specific tilt, will lead to one set of stripes of parallel
rays. From solution of part (T09.2b),

α = tan θ
(n1 − n2)

n1
Two sets of planes with relative angle of 2θ will create angular separation
of 2α between the stripes. 1.0
At a distance of H this will create a horizontal separation of ≈ 2αH.
For H = 1km, θ = 10◦, the horizontal shift will be

∆x ≃ 2αH = 2 tan θ
(n1 − n2)

n1
H = 2×1.76×10−6×1×105 cm = 0.35 cm. 1.0

Just below the point where two planes make upward bend, a patch of this
width 0.35 cm will be centred where no light from the star will reach.
Hence, WX = 0.35 cm 1.0

(T09.4c) 4Find the largest diameter, Dmax, of the telescope objective with which it will
be possible to obtain a single image of a star, by appropriately choosing the
location of the telescope relative to the structure of the boundary.

Solution:
From the figure one can see that two adjacent planes (with downward bend),
will lead to overlapping stripes of rays producing two images.
Therefore, the region in which only single image is formed will be 10.0 cm
(including the region X).

Hence, Dmax = 10.0 cm 4.0

(10 cm− 2WX) will get 1.0 mark

(10 cm−WX) will get 2.0 marks.

(T09.5) 6Consider the case when the zigzag shape of the boundary is allowed in both x and y
directions, (like a field of pyramids), and D = 100 cm (with f = 200 cm).
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Draw the qualitative pattern of the resulting speckles in the box given in the Summary
Answersheet.

Solution:

For D ≫ d, several stripes will fall on the lens, leading to multiple images. Here, four
images will form, two each from the set of planes with zigzag shapes along x-axis
and y-axis respectively.

First consider the zigzag shape of the boundary along the x axis. From solution of
(T09.4), angle between these two sets of rays will be 3.52× 10−6 rad. With f = 2m,
the separation between the two images will be = 7.0 µm.

For D = 100 cm, the diffraction peak size = 1.34 µm. So the images formed by the
two sets of planes (with tilts of ±10◦ from horizontal for each set) will form two
spots, clearly separated along the x-axis. Similarly for the y-axis.

The resulting speckles will be as shown below.

4 spots drawn 3.0

Spots along x and y axes 1.0

Circular shape of spots 1.0

No overlap of spots 1.0

(T09.6) 5For a turbulent atmosphere again consider the same parallelly running zigzag shape of
the boundary layer only along x-direction, but now the angle between two planes are
changing at a uniform rate from 10◦ to −10◦ in 1.0 s. Assume that this leads to a
uniform rate of shift of the position of the image.

Consider a telescope with D = 8 cm and f = 1m. Estimate the longest exposure time
tmax allowed for its CCD camera so that one gets only a single image, and any possible
deviation in its position remains less than 1% of the diffraction limited diameter of the
image.

Solution:

A single image is formed when only one stripe of rays is allowed to fall on the ob-
jective. This is only possible when the objective is placed suitably below the zigzag
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pattern.

The diffraction-limited image size for a D = 8 cm lens is 8.4× 10−6m. 1.0

The angle of the atmospheric layer changes from +10◦ to −10◦

=⇒ Change in angle of rays is 3.52× 10−6 rad
=⇒ Shift in image position = 3.52 µm. 1.0

Now, shift in the image position allowed is 1% of the image size.
∴ Allowed shift = 0.084 µm 1.0

Longest exposure time = Time taken by the image to shift by 0.084 µm

Image shifts by 3.52 µm in 1 s =⇒ 0.084 µm shift occurs in 0.024 s.

tmax = 0.024 s 2.0
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(T10) Big Bang Nucleosynthesis [35 marks]

During the radiation dominated era in the early Universe, the scale factor of the Universe a ∝ t1/2,
where t is the time since Big Bang. During most of this era, neutrons (n) and protons (p) remain
in thermal equilibrium with each other via weak interactions. The number density (N) of free
neutrons or protons is related to the temperature T and their corresponding masses m such that

N ∝ m3/2 exp

(
−mc2

kBT

)
,

as long as time t ≤ twk = 1.70 s, when kBT ≥ kBTwk = 800 keV. After twk, the weak interactions
can no longer maintain such equilibrium, and free neutrons decay to protons with a half-life time
of 610.4 s.

(T10.1) 4Let the number density of protons be Np, and that of neutrons be Nn . Calculate the
relative abundance of neutrons given the ratio Xn,wk = Nn/(Nn +Np) at time twk.

Solution:

The ratio of the number density of protons to that of neutrons at twk will be given
by

Nn(twk)

Np(twk)
=

(
mn

mp

)3/2

exp

(
−(mn −mp)c

2

kBTwk

)
2.0

Substituting the values of the masses of neutron and proton, and kBTwk = 800 keV,

one obtains Xn(twk) =
Nn

Np+Nn
= 0.166 2.0

(T10.2) Photons maintain thermal equilibrium and retain a blackbody spectrum at all epochs.

(T10.2a) 2Find the index β, such that T (a) ∝ aβ.

Solution:
For a black body spectrum, λmaxT should be equal to a constant. 1.0
Since the wavelength of light is λ ∝ a, this implies T ∝ a−1, which implies
β = −1 . 1.0
Alternatively, for black body radiation, energy density is proportional to
T 4, but the energy density is proportional to a−4. Therefore, T ∝ a−1.

(T10.2b) 2Identify which of the following graphs shows the correct behaviour of the spec-
tral energy density for two temperatures T1 and T2. Tick (✓) the correct option
in the Summary Answersheet.

Solution:
Graph B should be ticked. Wien’s law removes options D and E, Planck
curves at different temperatures should not intersect, and so C and A are
also incorrect.

(T10.3) After twk, the process of formation of deuterium from protons and neutrons is governed
by the Saha equation, given by the Indian physicist Prof. Meghnad Saha, which can be
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simplified to

ND

Nn
= 6.5η

(
kBT

mnc2

)3/2

exp

(
−(mD −mp −mn)c

2

kBT

)
.

Here, baryon-to-photon ratio η is 6.1×10−10, and ND is the number density of deuterium.

(T10.3a) 5Plot the ratio ND/Nn on the grid in the Summary Answersheet, for at least 4
reasonably spaced values of temperature that lie in the domain kBT = [60, 70] keV,
and draw a smooth curve passing through these points.

Solution:

Each of the 4 points correctly located on the graph 1.0

Drawing a smooth curve passing through all the points (within one grid
point)

1.0

Non-smooth lines, or straight lines not passing through all points get 0 credit.

(T10.3b) 1From the plot find kBTnuc (in keV) when ND = Nn.

Solution:
The value of kBTnuc = 66.0 keV . 1.0

Half credit lower limit Full credit range Half credit upper limit

65.4 keV to 66.6 keV

(T10.3c) 4Instead, now assume that all the free neutrons combine instantaneously with
the protons at kBTnuc to form Deuterium, and all of which immediately gets
converted to Helium (42He). Compute the corresponding epoch or time of nu-
cleosynthesis, tnuc (in s), for the formation of Helium.

Solution:
As T ∝ a−1, and a ∝ t1/2, we have T ∝ t−1/2. 2.0
The temperature and time when all neutrons and protons fuse into Helium
are Tnuc (66.0 keV) and tnuc, respectively.

tnuc = twk

(
Twk
Tnuc

)2
= 250 s 2.0

(T10.4) 5Calculate the value of Xn, nuc immediately before tnuc.
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Solution:

During twk < t < tnuc, as the Universe cools from 800 keV to 66.0 keV, neutrons
decay into protons and with a half life of 610.4 s, which corresponds to a mean life
time τ = 880.6s. 1.0

The quantity (Np+Nn)a
3 does not change as the increase in protons is compensated

by the decrease in neutrons. 1.0

However, Nna
3 will go down by an exponential factor compared to its value computed

in the first question as the neutrons decay into protons, i. e.,

Xn, nuc = Xn,wk exp(−(tnuc − twk/880.6)) 2.0

Xn, nuc = Xn,wk exp(−(250− 1.70)/880.6) = 0.125 1.0

Give part credit of 1 marks if half life time is used instead of the mean life time in the denominator

of the exponential.

(T10.5) 3The primordial Helium abundance, Yprim, is defined to be the fraction of total mass in
the Universe that is bound in Helium at Tnuc. Obtain a theoretical estimate for the value
of Yprim. For the purpose of this calculation alone, assume mp ≈ mn and that the mass
of Helium, mHe ≈ 4mn.

Solution:

Helium forms with the combination of 2 protons and 2 neutrons (ignoring mass
deficit), and thus a number density Nn of neutrons and correspondingly same number
density of protons will be locked in Helium. The number density of both species goes
as a−3, and so will cancel from the numerator and denominator. 1.0

Even after Helium is formed the sum of the mass of Helium and Hydrogen will still
be the mass of all the neutrons and protons. 1.0

Thus, the abundance of Helium by mass should be

Yprim =
(mp+mn)Nn

mpNp+mnNn
≈ 2Xn, nuc = 0.250 1.0

Alternatively, the value of Xn, nuc is 1/8. After formation of Helium all neutrons will
combine with protons. Therefore, the mass in Helium will be 2/8 of the total mass.

(T10.6) The primordial abundance of Helium is very difficult to measure, as stars continuously
convert Hydrogen to Helium in the Universe. The amount of processing by stars in a
galaxy is characterised by the relative number density of Oxygen (which is only pro-
duced by stars) to hydrogen, denoted as (O/H), in the galaxy. A compilation of the
measurements of (O/H) and the Helium abundance, Y , for different galaxies is plotted
below.
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Use all of the points in this plot (which is reproduced in the Summary Answersheet) to
answer the following.

(T10.6a) 2Estimate Y for a blue compact dwarf galaxy with a value of (O/H)=1.75×10−4.

Solution:
By fitting a line to these data points the Helium abundance for the said
galaxy would be: Y = 0.2480 2.0.

Half credit lower limit Full credit range Half credit upper limit

0.2470 0.2475 to 0.2485 0.2490

(T10.6b) 2Obtain the slope dY/d(O/H) of the straight line fit to the above data.

Solution:
The slope of the line yields dY/d(O/H) = 23 . 2.0

Half credit lower limit Full credit range Half credit upper limit

15 19 to 27 31

(T10.6c) 2Estimate the primordial Helium abundance, Y obs
prim, based on the above observa-

tions.

Solution:
The primordial Helium abundance, Y obs

prim = 0.2440 . 2.0

Half credit lower limit Full credit range Half credit upper limit

0.2430 0.2435 to 0.2445 0.2450

(T10.7) 3The deviation between Yprim and Y obs
prim can be reconciled by changing the baryon-to-

photon ratio η. When η is decreased, as indicated by ↓ in the Summary Answersheet,
indicate the increase (↑) or decrease (↓) in ND/Nn(T ), Tnuc (when ND = Nn), tnuc,
Xn, nuc, and Yprim in the boxes provided in the Summary Answersheet.

Solution:

From the Saha equation, we see that ND/Nn(T ) ∝ η, thus when η ↓, ND/Nn(T )
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will also ↓. From the plot in (T10.3a), this would mean that ND/Nn(T ) would be
unity at a lower value of Tnuc which will go ↓. A lower temperature corresponds to a
longer tnuc (↑). This would result in more neutrons decaying into protons and thus
less Yprim ↓.

η ↓ ND/Nn(T ) ↓ Tnuc (ND = Nn) ↓

tnuc ↑ Xn, nuc ↓ Yprim ↓

Each correct box fetches 0.5 marks.

We give a bonus 0.5 marks if all 5 boxes are marked correctly.
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(T11) Stars through graphs [50 marks]

Stars can be well approximated as spherically symmetric objects, and hence the radial distance
r from the centre can be chosen as the only independent variable in modelling stellar interiors.
The mass contained within a sphere of radius r is denoted by m(r). The luminosity l(r) is defined
as the net energy flowing outward through a spherical surface of radius r per unit time. Other
quantities of interest, for example, the density ρ(r), temperature T (r), hydrogen mass fraction
X(r), helium mass fraction Y (r), and the nuclear energy generated per unit mass per unit time
ϵnuc(r), are taken to be functions of r. Throughout this problem we shall neglect the effects of
diffusion and gravitational settling of elements inside the star.

The symbol “log” refers to logarithm to the base 10. The problem consists of three independent
parts.

(T11.1) Part 1: Inside a star

The graph below shows the variation of three structural quantities, A, B, and C, as
functions of the fractional radius r/R in a stellar model of mass 1M⊙ and age 4Gyr,
where R is the photospheric radius of the star. The values of the helium mass fraction at
the (photospheric) surface, Ys, and the metallicity (mass fraction of all elements heavier
than helium) at the (photospheric) surface, Zs, of the star are given by (Ys, Zs) = (0.28,
0.02). All quantities shown in the plots are normalised by their respective maximum
values.

(T11.1a) 6Identify the three quantities A, B, and C uniquely from among the five possi-
bilities:

T (r), l(r), ϵnuc(r), X(r), Y (r).

(Write A/B/C in the boxes beside the appropriate quantities in the Summary
Answersheet. No justification is needed for your answer.)

Solution:

• X and l increase with r, while T , ϵnuc, and Y decrease with r. So A
and B must be X and l.

• For a 1M⊙ star of age 4Gyr, X ̸= 0 at centre. So B cannot be X.

• Also, l = 0 at centre. Matches with B.

• Both X and l must saturate to their maximum values just outside the
H-burning core, and this happens at r/R = 0.3 here.

• Each of T , ϵnuc, and Y have their maximum value at the centre and
decrease outwards. So C is one of these.
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• But Y cannot be (close to) zero at the surface (r/R = 1) compared
to its central value.

• ϵnuc becomes extremely small just outside the core (r/R ≲ 0.3), and
not at the surface.

• Therefore, C must be T (r) (the surface value is ∼ 103K, compared to
the maximum value at the centre ∼ 106K).

Therefore,

A −→ X(r) 2.0

B −→ l(r) 2.0

C −→ T (r) 2.0

No negative marking. Credit only for unique identification. No credit even for correct

answer if the same letter is repeated for another quantity.

(T11.1b) 3What is the mass fraction of helium at the centre, Yc, of the star?

Solution:
Maximum value of X occurs outside the core, and is given by

Xs = 1− Ys − Zs = 1− 0.28− 0.02 = 0.70 1.0

Note Z remains constant throughout the star in the absence of gravitational
settling and diffusion (given).
From the given graph, the central hydrogen mass fraction, Xc, is approxi-
mately

Xc ≈ 0.55Xs = 0.55× 0.70 = 0.39 1.5

Credit of 1.0 for realising Xc ̸= 0.55, but is normalised value.

Credit of 0.5 for correct readoff from graph (0.53–0.55).

Then, the helium mass fraction at the centre is

Yc = 1−Xc − Zc = 1− 0.39− 0.02 = 0.59 0.5

Half credit lower limit Full credit range Half credit upper limit

0.59 to 0.61

(T11.1c) 5Sketch the remaining two quantities from the list of five (which were not iden-
tified as curves A, B, or C) given in (T11.1a), as functions of r/R on the same
graph in the Summary Answersheet, and label by their respective quantities.

Solution:

• The curve for ϵnuc must mirror that of l. 2.5
Any reasonable smooth curve between (0,1) and (0.3,0) is acceptable. Credit

points:

Curve starts at (0,1) 0.5

Curve goes to zero between (0.25, 0) and (0.35, 0) 1.0

Curve goes smoothly to zero 0.5
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Curve is overall smooth 0.5

• The curve for Y must mirror that of X, and flatten outside the core
to the normalized value corresponding to Ys = 0.28.
Previous result of Yc = 0.59 gives this normalized value:
0.28/0.59 ≈ 0.47. 2.5
Credit points:

Curve starts at (0,1) 0.5

Shape of curve mirrors that of X 0.5

The curve flattens between r/R = 0.25 and r/R = 0.35 0.5

The flattened value is between 0.45 and 0.50 1.0

For wrong identification of A, B, C in (T11.1a), student may draw curves of X, l or

T in this part. Credit should be given for those as:

For X:

Curve starts between (0,0.5) and (0,0.6) 1.0

Shape of curve mirrors that of Y 0.5

The curve goes to 1.0 between r/R = 0.25 and r/R = 0.35 1.0

For l:

Curve starts at (0,0) 1.0

Shape of curve mirrors that of ϵnuc 0.5

The curve goes to 1.0 between r/R = 0.25 and r/R = 0.35 1.0

For T :

Curve starts at (0,1) 1.0

Curve decreases smoothly but not linearly 0.5

The curve goes to almost zero r/R = 1.0 1.0

(T11.2) Part 2: Evolving stars
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Consider the evolution of a 1M⊙ star whose initial uniform composition is given by the
mass fractions of helium, Y0 = 0.28, and metals, Z0 = 0.02. The figures below show the
variation of different global quantities of this star as it evolves from ZAMS (Zero Age
Main Sequence) till the end of helium burning in its core.

The graph below shows the evolutionary track of the star on the HR diagram (plot of
logL/L⊙ vs log Teff, where L is the surface luminosity and Teff is the effective tempera-
ture).

The figure below has four graphs which show the variation of Teff (in K), L (plotted as
logL/L⊙), R (plotted as logR/R⊙), and Yc with age (in 109 yr) of the same star. In
each of these four graphs, the insets show the variations of the respective quantities in
detail between the ages of 11.86× 109 yr to 12.00× 109 yr, for greater clarity.

Use these graphs to answer the questions below.

(T11.2a) 1What is the approximate main sequence lifetime, tMS (in years), of the star?

Solution:
During the main sequence phase, the mass fraction of helium at the centre
increases steadily, up to a maximum value of Yc,max = 1 − Zc. Here that
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maximum value is reached at an age of around 8.5Gyr, from the plot of Yc
vs age.

tMS= 8.5× 109 yr 1.0

Half credit lower limit Full credit range Half credit upper limit

8.0× 109 yr to 9.0× 109 yr

(T11.2b) 1What is the approximate duration, ∆tHe (in years), for which the star burns
helium in its core?

Solution:
During the helium burning phase, the mass fraction of helium at the centre
decreases steadily, down to 0. The inset in the plot of Yc vs age shows
that this corresponds to ages between 11.896 × 109 yr and 11.960 × 109 yr,
corresponding to a duration of 64Myr.

∆tHe = 64× 106 yr 1.0

Half credit lower limit Full credit range Half credit upper limit

62× 106 yr to 66× 106 yr

(T11.2c) 3What fraction, fH, of the initial amount of hydrogen at its centre has been
burnt when the luminosity of the star is 1 L⊙?

Solution:
Read-off from the plot of logL/L⊙ vs age, we get age ≈ 4× 109 yr. 1.0
At this age, read-off from plot of Yc vs age, we get

Yc ≈ 0.60 =⇒ Xc ≈ 1− 0.60− 0.02 = 0.38 1.0

Therefore the fraction of original H burnt is

fH = 1− Xc

X0
= 1− Xc

1− Y0 − Z0
= 0.46 1.0

Half credit lower limit Full credit range Half credit upper limit

0.39 0.45 to 0.46 0.53

Expression in % or fraction is ok.

(T11.2d) 3What is the radius of the star, R1 (in units of R⊙) when 60% of the initial
amount of hydrogen at its centre has been burnt?

Solution:

X0 = 1− Y0 − Z0 = 1− 0.28− 0.02 = 0.70

At this stage 60% of H has been burnt at the centre. SoXc = 0.40X0 = 0.28.
Therefore,

Yc = 1−Xc − Zc = 1− 0.28− 0.02 = 0.70 2.0

From the graph of Yc vs age, this corresponds to an age of approximately 5×
109 yr. At this age, the value of radius is approximately 1R⊙ (logR/R⊙ ≈
0), from the graph of logR/R⊙ vs age.

R1 = 1R⊙ 1.0
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Any other answer is unlikely since it would involve eye approximation of reading of

graphs, that is not to be credited.

(T11.2e) 4What are the radii of the star, RP and RQ (in units of R⊙), corresponding to
its positions P and Q, respectively, as marked on the HR-diagram?

Solution:
For P:
log Teff = 3.74 =⇒ Teff ≈ 5500K (the L, being flat, does not help here). 1.0
Read-off from plot of Teff vs age, we get age ≈ 11× 109 yr.
At this age, read-off from plot of logR/R⊙ vs age, we get logR/R⊙ ≈
0.25 =⇒ RP= 1.78R⊙ . 1.0

Half credit lower limit Full credit range Half credit upper limit

1.78R⊙ to 1.80R⊙

Only credit of 0.5 in final step if left as logR/R⊙ = 0.25.

For Q:
logL/L⊙ = 2.5. 1.0(One can also use log Teff = 3.60 =⇒ Teff ≈ 3981K which
would require rounding off to 3950K at the next step.)
Read-off from (the inset) plot of logL/L⊙ vs age, we get age ≈ 11.884 ×
109 yr. Notice that this value of logL/L⊙ occurs twice, and one has to take
the first one, i.e., the ascending RGB branch.
At this age, read-off from (inset) plot of logR/R⊙ vs age, we get logR/R⊙ ≈
1.6 =⇒ RQ= 39.81R⊙ . 1.0

Half credit lower limit Full credit range Half credit upper limit

39.8R⊙ to 40.0R⊙

Only credit of 0.5 in final step if left as logR/R⊙ = 1.6.

Answer should be same if using Teff in the first step.

(T11.3) Part 3: Mass distribution inside a star

The equation that governs the distribution of mass inside a star is given by

dm(r)

dr
= 4πr2ρ(r)

It would be convenient to express this equation in terms of three dimensionless variables,
namely, the fractional mass, q, the fractional radius, x, and the relative density, σ, that
we define as

q = m/M x = r/R σ = ρ/ρ̄

where M and R are the total mass and radius of the star, respectively, and ρ̄ ≡ M
4
3πR

3

is the average density of the star. For the particular star that we shall be considering in
this part, the following information is given:

• The central density ρ(x = 0) = 80ρ̄

• Half of the star’s mass is contained within the inner 25% of its total radius, and 70%
of its mass is contained within the inner 35% of its total radius.

In all subsequent parts of this question, it will be sufficient to round off all derived
numerical coefficients to within 0.005.
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(T11.3a) 2Express the above equation describing the dependence of mass on radius in

terms of x,
dq(x)

dx
and σ(x).

Solution:
dq

dx
=

dq

dm

dm

dr

dr

dx
0.5

=
1

M

[
4π(Rx)2ρ

]
R

= 3

(
4πR3

3M

)
x2ρ = 3

1

ρ̄
x2ρ 1.0

∴
dq

dx
= 3x2σ 0.5

To obtain the distribution of mass with radius, we need to know the density profile inside
the star. For the purpose of this problem, we shall describe the variation of density with
radius by approximate forms in two domains of x:

• the inner part of the star: 0 ≤ x ≤ 0.32

• the middle part of the star: 0.32 < x < 0.80
We do not make any approximation for the outermost part, i.e., 0.80 ≤ x ≤ 1.00.

(T11.3b) 4Approximation for the middle part: The variation of log σ, as a function
of log x in the middle part of the star is shown (by the black curve) in the graph
below. We shall make a linear approximation (shown as a dashed red line in
the graph) for log σ as a function of log x in the domain −0.5 < log x < −0.1,
i.e., 0.32 ≲ x ≲ 0.80 (shown by the green shaded domain). Further, we shall
approximate the slope of this line by the nearest integer.

Use this approximation to write an expression for σ(x) as a function of x in the
domain 0.32 < x < 0.80.

Solution:
Let us denote the line as

log σ = α log x+ β

From the graph, we use the two end points (−0.5, 1.0) and (−0.1,−1.0).
Therefore,

1.0 = −0.5α+ β
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−1.0 = −0.1α+ β

Solving, we get α = −5 and β = −1.5. Therefore,

log σ = −5 log x− 1.5 for − 0.5 < log x < −0.1 2.0

∴ σ(x) = 10−1.5x−5 for 0.32 < x < 0.80

=⇒ σ(x) = 0.030x−5 for 0.32 < x < 0.80 2.0

Not rounding off 10−1.5 is acceptable with full credit.

(T11.3c) 6Use the result of (T11.3b) to derive an expression for q(x) in the domain 0.32 <
x < 0.80.

Solution:
dq

dx
= 3x2σ = 3x2(0.030x−5) = 0.090x−3 1.0

Integrating, we get

q(x) =

∫
0.090x−3dx 1.0

= −0.045

x2
+ C (C is a constant of integration) 1.0

Without the constant of integration, only 0.5 marks is given in the last step. Now,

given that q(x = 0.35) = 0.7. Using this, we get C = 1.067. 2.0
Therefore (rounding off to within 0.005),

q(x) = 1.065− 0.045

x2
for 0.32 < x < 0.80 1.0

If consistent with rounding off at earlier steps, values between 1.065 and 1.091 for the

constant term are acceptable with full credit.

(T11.3d) 8Approximation for the inner part: In the inner part of the star (0 ≤ x ≤
0.32), the density may be approximated as a linear function of radius, i.e.,
σ(x) = Ax + B, where A,B are constants. Determine A and B, and hence
obtain an expression for q(x) in the domain 0 ≤ x ≤ 0.32. Note that the
approximations adopted in the previous part and this part may lead to small
discontinuities in density or mass at x = 0.32.

Solution:
dq

dx
= 3x2σ = 3x2(Ax+B) = 3Ax3 + 3Bx2 1.0

Integrating, we get

q(x) =

∫
(3Ax3 + 3Bx2)dx 1.0

=
3A

4
x4 +Bx3 +D (D is a constant of integration) 1.0

Without the constant of integration, only 0.5 marks is given in the last step.

Three boundary conditions applied sequentially to find the constants:

• Mass at the centre is zero, i.e., q(0) = 0 =⇒ D = 0 0.5
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• ρ(0) = 80ρ̄ (given), i.e., σ(0) = 80 =⇒ B = 80 1.5

• Given q(0.25) = 0.50. Therefore,

0.5 =
3A

4
(0.25)4 + 80

=⇒ A =
4

3

0.50− 80(0.25)3

(0.25)4

=⇒ A = −256 2.0

Therefore, putting the values of A and B,

q(x) = −192x4 + 80x3 for 0 ≤ x ≤ 0.32 1.0
Using continuity at x = 0.32 instead of either of the above conditions will not be

credited, since discontinuity has been indicated in the question.

(T11.3e) 4The expressions for q(x) obtained in parts (T11.3c) and (T11.3d) are approxi-
mations that describe the variation of mass with radius quite well, but only in
specific regions of the star. For the domain 0.80 ≤ x ≤ 1 (for which we have
not derived any expression), it is possible to use appropriate extrapolation from
the neighbouring region. Use these approximate expressions and given data to
sketch a smooth curve (without any discontinuities either in q(x) or its deriva-
tive) for q(x) vs x for the entire star (0 ≤ x ≤ 1) that represents the variation
of mass with radius.

Solution:

Credit will be given on the following aspects:

Curve begins at (0,0) and ends at (1,1) 0.5

Slope is zero at both ends 1.0
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Curve passes through the two given points 1.0

Initial part of the curve looks like a cubic-quartic 0.5

Latter part of the curve looks negative inverse-square with a dc shift 0.5

Curve is overall smooth 0.5
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(T12) Hawking Radiation from Black Holes [50 marks]

(T12.1) Stellar mass blackholes

A black hole (BH) typically forms by the gravitational collapse of a massive star at the
end of its life cycle to a point called a singularity. Due to the extreme gravity of such an
object, nothing that enters the so-called event horizon (a spherical surface with r = RSC,
where r is the distance from the singularity) is able to escape from it. Here, RSC is
referred to as the Schwarzschild radius.

(T12.1a) 4Modelling the origin of Hawking radiation: Consider a pair of particles,
each with mass m, produced on either side of the BH horizon. One particle is
slightly outside the horizon at r ≈ RSC, while the other particle is inside the
horizon at r = κRSC. Assume that the total energy of a particle is the sum of
its rest mass energy mc2 and the gravitational potential energy due to the BH.
Determine the value of κ for which the particle pair has zero total energy.

Solution:

• Total energy of any particle is E = Egrav +mc2, so we have

E1 = −GMbhm

RSC
+mc2 , E2 = −GMbhm

κRSC
+mc2 . 1.0

• We require E1 + E2 = 0. Hence,

2mc2 − GMbhm

RSC

(
1 +

1

κ

)
= 0 1.0

• Then
1

κ
=

2c2RSC

GMbh
− 1 = 3

where we have used RSC =
2GMbh

c2
. 1.0

• This gives κ =
1

3
. 1.0

(T12.1b) 4Temperature of a black hole: If the particle produced outside the horizon
in the above process has enough kinetic energy, it may escape the BH in a pro-
cess called Hawking radiation. The one inside the horizon, which has negative
energy, gets absorbed and decreases the mass of the BH.
Assume that all Hawking radiation is made of photons with a black body spec-
trum which peaks at the wavelength λbb ≈ 16RSC. It is known that for a solar
mass BH, RSC,⊙ = 2.952 km.
Obtain an expression for the temperature, Tbh, of the BH corresponding to
this black body radiation, in terms of its mass Mbh and physical constants.
Calculate the Schwarzschild radius, RSC, 10⊙, and temperature, Tbh, 10⊙, for a
BH with mass 10M⊙.

Solution:

• Using Wien’s law, λbb = b/Tbh where b = 2.898× 10−3mK‘. 1.0

• Hence, Tbh =
b

16RSC
=⇒ Tbh =

bc2

32GMbh
.1.0
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• Since RSC for a solar mass black hole is 2.952 km,

For a black hole with mass = 10 M⊙ , we get RSC, 10⊙ ≃ 29.52 km 1.0.

Given the significant figures, 29 or 30 km will get full marks.

• The temperature of this BH will be

Tbh, 10⊙ =
2.898× 10−3m K

16×RSC, 10⊙

Tbh, 10⊙ = 6.1× 10−9K . 1.0

Half credit lower limit Full credit range Half credit upper limit

6.0× 10−9 K to 6.2× 10−9 K

(T12.1c) 8Mass loss of a black hole: Assume that the Hawking radiation is emitted
out from the event horizon. Using the mass-energy equivalence, obtain an
expression for the rate of mass loss, dMbh(t)/dt, in terms of the mass Mbh(t) of
the BH and physical constants.
Hence, obtain an expression for Mbh(t) for a BH with initial mass M0. Sketch
Mbh(t) as a function of t from Mbh = M0 to Mbh = 0.

Solution:

• Power emitted by an evaporating black hole = σT 4
bh4πR

2
SC. 1.0

• This gives

dMbh

dt
= − 1

c2
σT 4

bh4πR
2
SC . 1.0

• With Tbh = b/(16RSC),

dMbh

dt
= −πb4σc2

164G2

1

M2
bh

1.0

• This gives
dMbh

M2
bh

= −πb4σc2

164G2
dt, and hence

M3
bh

3
= −πb4σc2

164G2
t+ C. 1.0

• Since Mbh = M0 at t = 0, we get M3
bh = M3

0 − 3
πb4σc2

164G2
t 0.5

Mbh(t) =

(
M3

0 − 3
πb4σc2

164G2
t

)1/3

1.0

The value of
πb4σc2

164G2
= 3.868× 1015 kg3 s−1, not necessary here, but gets full credit.
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2.5
M0 marked on Mbh(t)-axis 0.5

Correct expression for the intercept on the t-axis 0.5

Negative initial slope 0.5

Large negative final slope 0.5

Convex nature of the curve 0.5

(T12.1d) 3Lifetime of a black hole: Obtain an expression for the lifetime τbh at which
a black hole with initial mass M0 completely evaporates due to Hawking radia-
tion, in terms of M0 and physical constants. Calculate the lifetime τbh, 10⊙ (in
seconds) for a black hole with M0 = 10M⊙.

Solution:

• We know that M(t) =

(
M3

0 − 3
πb4σc2

164G2
t

)1/3

.

• Clearly, M(t) = 0 when t =
M3

0

3

164G2

πb4σc2
. Thus, τbh =

M3
0

3

164G2

πb4σc2
1.0

• With A ≡ πb4σc2

164G2
≃ 3.868× 1015 kg3 s−1, 0.5this gives

τbh ≈ M3
0

3A
= 8.617× 10−17

(
M0

kg

)3

s. 0.5

• For M0 = 10M⊙,

τbh, 10⊙ ≈ 6.8× 1077 s 1.0

(T12.1e) 6Black hole in a CMB radiation bath: Consider an isolated black hole
in space, far away from other bodies, with a current temperature T now

bh , sur-
rounded by the cosmic microwave background (CMB) with a current temper-
ature T now

cmb = 2.7K. The black hole can grow in mass by absorbing CMB
radiation, and lose its mass by Hawking radiation.
Taking into account the accelerating expansion of the Universe, identify which
of the following figures show the long-term time evolution of Tbh in the following
three cases:
(X) T now

bh > T now
cmb , (Y) T now

bh = T now
cmb , (Z) T

now
bh < T now

cmb .
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Indicate your answer by ticking the appropriate box (only one) for each case X,
Y or Z in the Table given in the Summary Answersheet corresponding to the
appropriate figure number.

Solution:
As the CMB will redshift away eventually, there will be no CMB radiation
for the BH to absorb at large t. It will only decrease in mass and increase in
temperature. So only the figures which show the temperature of the black
hole increasing eventually (t → ∞) are relevant. The derivatives at the
origin (now) should distinguish the three cases.

(X) If T now
bh > T now

cmb , then the BH is losing more energy now than it is
gaining by CMB absorption, and its temperature should increase due
to decreasing mass. (dT/dt)now > 0.

(Y) If T now
bh = T now

cmb , the temperature will be in equilibrium for some time,
i.e. (dT/dt)now = 0, before the CMB temperature redshifts to smaller
values and (dT/dt)∞ > 0.

(Z) For T now
bh < T now

cmb , initially the BH will gain mass (and hence cool
down) by absorbing from CMBR compared to what it loses by evap-
oration. So (dT/dt)now < 0. But eventually, (dT/dt)∞ > 0.

I II III IV V VI

X
√

Y
√

Z
√

6.0
2.0 marks each for one and only one correct tick for the cases X, Y, Z. More than one

tick for any case receives no credit for that case.

(T12.2) Primordial black holes (PBHs) of much smaller masses can form in the very early Uni-
verse. All the following questions are related to PBHs. Here, any processes that increase
the mass of the black hole may be neglected.

(T12.2a) 4PBH evaporating at the current epoch: As you may have noticed from
the answers to the previous questions, black holes of solar mass would take a
long time to evaporate. However, since PBHs can have a much smaller mass,
we may be able to see them evaporating in current times.
Find the initial mass M0, PBH (in kg), Schwarzschild radius RSC,PBH (in m),
and temperature TPBH (in K) of a black hole that may be evaporating away
completely at the present epoch, i.e., those with lifetime τPBH = 14 billion years.
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Solution:

• We want τPBH = 14× 109 × 3.156× 107 s = 4.418× 1017 s. 1.0

• But we have found in (T12.1d) that τbh = 8.617× 10−17

(
M0

kg

)3

s.

This gives M3
0, PBH =

(
τPBH

8.617× 10−17

)
kg3

⇒ M0, PBH ≃ 1.7× 1011 kg 1.0

• Since RSC ∝ Mbh, and we know RSC,⊙ = 2952m ,

RSC,PBH ≃ RSC,⊙

(
M0, PBH

M⊙

)
⇒ RSC,PBH = 2.6× 10−16m 1.0

• Since Tbh ∝ 1/Mbh and we know Tbh, 10⊙ from (T12.1b),

TPBH ≃ Tbh, 10⊙

(
10M⊙
M0, PBH

)
⇒ TPBH = 7.1× 1011K 1.0

(T12.2b) 6Formation of a PBH: In the radiation-dominated early Universe, the scale
factor varies as a(t) ∼ t1/2. In this era, PBHs form due to the collapse of all
energy contained in a region of physical size ct, where t is the age of the Universe
at that time.
A PBH with mass of 1012 kg forms when the age of the Universe is about 10−23 s.
Calculate the age of the Universe, t20, when a PBH of mass 1020 kg forms.

Solution:

• The size of horizon rH = ct. So the total mass contained within the
horizon volume is

M =
1

c2
ρ

(
4π

3

)(
ct

2

)3

. 2.0

• With a(t) ∼ t1/2 and a(t) ∼ 1/T , one gets t ∼ T−2. 2.0

• With ρ ∼ T 4 ∼ t−2, the mass of PBH formed at time t would be

M0, PBH ∝ t

. 1.0

• The age of the Universe at which PBH of 1012 kg forms is t12 = 10−23 s.

• Hence, t20 = t12 ×
(
1020 kg

1012 kg

)
⇒ t20 = t12 × 108 = 10−15 s 1.0

(T12.2c) 5Observed spectrum of Hawking radiation from PBH: Consider a PBH
of initial mass 1010 kg which completely evaporates at the end of its lifetime
τPBH. For this part, assume for simplicity that most of the Hawking radiation
is emitted at this time, with a temperature corresponding to its initial mass.
Also, take the scale factor of the Universe to be evolving as a(t) ∼ t2/3.
Calculate the peak wavelength of this Hawking radiation as observed at Earth,
λearth, at the present epoch (at t = 14 billion years).
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Solution:

• Lifetime of the PBH with M0, PBH = 1010 kg will be

τPBH = 8.617× 10−17 · (1010)3s = 8.617× 1013 s . 0.5

• As given in (T12.1b), RSC,⊙ = 2952m. Using RSC ∝ M , we get the
peak wavelength of radiation emitted by this 1010 kg PBH, at the
time of emission, as

λ0 ≃ 16RSC = 16 · 10
10kg

M⊙
·RSC,⊙ = 2.4× 10−16m. 1.5

• Redshifted wavelength received at earth at present time t0 is obtained
from

λearth = λ0
a(t0)

a(τPBH)
. 1.0

• With a(t) ∼ t2/3, we get

λearth = λ0

(
tnow
τPBH

)2/3

= 2.4× 10−16m

(
4.418× 1017 s

8.617× 1013 s

)2/3

1.0

λearth = 7.1× 10−14m 1.0

(T12.2d) 10High energy cosmic radiation from PBH: Now assume that the Hawking
radiation emitted at a given time t corresponds to photons emitted with an
energy kBTbh(t). Also, the highest possible temperature for a black hole is the
Planck temperature TPlanck where kBTPlanck = 1019GeV.
The evolution of the scale factor over relevant time scales is given in the following
figure. The scale factor today is set to be unity. t(s) on the time axis represents
the age of the universe in seconds.

If a photon with an energy of Edet = 3.0× 1020 eV is observed on Earth, deter-
mine the largest and the smallest possible values of the initial mass of the PBH
(Mmax

0 and Mmin
0 , respectively) which could be responsible for this photon.

Solution:

• Using the expression for Tbh found in (T12.1b), the energy of a typical
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photon emitted at time t for a PBH is

Eemitted(t) = kBTbh(t) =
bc2kB

32GMbh(t)
. 1.0

• From (T12.1c), we know

M3
0 = 3

πb4σc2

164G2
t+Mbh(t)

3 = 3At+

(
bc2kB

32GEemitted(t)

)3

. 1.0

• The value of Edet can be different from Eemitted due to redshift. Hence,
the smallest possible value of Eemitted(t) is Edet = 3.0× 1020 eV. This
gives the maximum value of the second term as(

bc2kB
32GEemitted(t)

)3

max

= 4.3× 10−5 kg3. 1.0

• Given the value of A = 3.868 × 1015 kg3 s−1, the second term can
always be neglected for t ≳ 10−19 s. This is true in this problem. So
M0 ≈ (3At)1/3. 1.0

• The largest possible M0 would be obtained when t is as large as
possible, i.e., t = tnow. This will correspond to a BH radiating in its
last stages at present in the nearby region. 1.0

• Then

Mmax
0 = (3Atnow)

1/3 = (5.13× 1033kg3)1/3. 0.5

• Thus,

Mmax
0 = 1.7× 1011 kg. 0.5

• Note that this was already found in (T12.2a), so the calculation above
is not needed.

• The smallest M0 will correspond to a BH that has evaporated as
early as possible. Such a BH would have evaporated far away from
Earth, and its radiation would be redshifted.

• The smallest time of evaporation would correspond to the largest red-
shift factor, and hence the largest Eemitted(t), which is Eemitted(t) =
kBTPlanck. 1.0

• The ratio of the scale factors at the time of the above PBH evaporation
and now is

a(t)

a(tnow)
=

Edet

kBTPlanck
=

3.0× 1020 eV

1019GeV
= 3.0× 10−8

With a(tnow) = 1.0, we have a(t) = 3.0× 10−8. 1.0

• Using the plot of a(t) vs t from the figure, t ≃ 104 s. Note that for
this t, the second term in the original M3

0 expression is still negligible.
1.0

• Therefore, Mmin
0 ≈ (3At)1/3 ≈ 4.9× 106 kg . 1.0
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Half credit lower limit Full credit range Half credit upper limit

2.5× 106 kg to 10.0× 106 kg


