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(D01) 30 Years of Exoplanets [90 marks]

This problem explores some aspects of the two main methods of exoplanet detection: radial
velocity and transit. Throughout this problem we shall consider a particular system of a single
planet (P) in a circular orbit with radius a around a solar-type star (S). We shall refer to this
system as the “SP system”.

Stellar parameters

(D01.1) 8The V-band apparent magnitude of the star S is (7.65±0.03)mag, the parallax is (20.67±
0.05)milliarcsecond and the bolometric correction (BC) is −0.0650mag. Thus the star
has a higher bolometric luminosity than its luminosity in the V-band.

Estimate the mass of the star, Ms (in units of M⊙), assuming a mass-luminosity (M–L)
relation of the form L ∝ M4. Also estimate the uncertainty in Ms. You may need
d
dx lnx = 1

x .

Solution:

Given
Parallax: p = (20.67± 0.05)milliarcsecond
V-band apparent magnitude: mV= (7.65± 0.03)mag
Let:
V-band absolute magnitude: MV

Bolometric Magnitude: Mbol

Bolometric Magnitude of the Sun: Mbol,⊙= 4.74mag (given)

MV = mV + 5(log p+ 1) = 4.227mag

Mbol = MV +BC

= mV + 5(log p+ 1) + BC = 4.162mag

Also Mbol = Mbol,⊙ − 2.5 log
Lbol

L⊙

∴ Lbol = 10

Mbol,⊙ −Mbol

2.5 L⊙ = 6.521× 1026W

Then Ms =

(
Lbol

L⊙

)1/4

M⊙ = 1.14M⊙

Uncertainty estimate:

∆Mbol =

√
(∆mV)2 +

(
5

ln 10

∆p

p

)2

= 0.03mag

Now, Ms = 10

Mbol,⊙ −Mbol

10

∴ ∆Ms = Ms
∆Mbol

10
ln 10

= 0.01M⊙

Ms= (1.14± 0.01)M⊙
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Radial Velocity method

The radial velocity method uses the Doppler shift δλ ≡ λobs−λ0 between the observed wavelength
λobs and the rest wavelength λ0 of a known spectral line to detect an exoplanet and determine its
characteristics.

The figure below shows the δλ for the Fe I line (λ0 = 543.45 × 10−9m) as a function of time as
observed for the SP system.

The radial velocity semi-amplitude K is defined as K ≡ (vr, max − vr, min)/2 where vr, max and
vr, min are the minimum and maximum radial velocities, respectively. For a circular planetary
orbit the semi-amplitude K can be written as:

K =

(
2πG

T

)1/3 Mp sin i

(Mp +Ms)2/3

where T is the period, i is the inclination of the planetary orbit (angle between the normal to the
orbital plane of the planet and the line of sight of the observer), Mp and Ms are the masses of the
planet and the star, respectively.

(D01.2) Use the graph given in the Summary Answersheet to answer the following.

(D01.2a) 2Draw a smooth curve associated with the observed data shown in the graph.

Solution:
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(D01.2b) 11Select appropriate points on your drawn curve and use suitable methods to
determine T and K along with respective uncertainties. All data points used
for the calculation of T and K must be shown in the table in the Summary
Answersheet. Use the rest of the table to show your intermediate calculations,
as needed, with appropriate headers.

Solution:
T Determination:
Least count on time axis = 0.2 d
There are 13 zero crossings (ZC) and 6 periods.
Difference between ZC-1 and ZC-13 = (21.6− 0.6) = 21.0 d

T =
21

6
= 3.5 d

Uncertainty in T :

∆T =
1

6

√
(0.22 + 0.22) = 0.05 d

T = (3.50± 0.05) d

K Determination:

Serial No. Values of Extrema 2δλ K
of Extrema (×10−15m) m ms−1

1 −165

2 160 325

3 −160

4 165 325

5 −160

6 155 315

7 −165

8 155 320

9 −160

10 160 320

11 −165

12 160 325

13 −155
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Least count on δλ axis = 5× 10−15m
Differences in measured extrema (δλ) of alternate pairs are written in table.

2(δλ)Mean = 321.67× 10−15m

(δλ)Mean = 160.83× 10−15m

K =
δλ

λ
× c

=
160.83× 10−15 × 2.998× 108

543.45× 10−9

= 88.73m s−1

Uncertainty in K:

σδλ =

√
1

N − 1
Σ (δλ− (δλ)Mean)

2

= 2.041× 10−15m

σK =
σδλ
λ

× c

=
2.041× 10−15 × 2.998× 108

543.45× 10−9
= 1.12m s−1

K = (89± 1)m s−1

(D01.2c) 5Find the minimum mass of the planet Mp,min (in M⊙), and its corresponding
uncertainty, assuming Mp ≪ Ms.

Solution:
The minimum mass of the planet Mp,min ≡ Mp sin i comes from equation
of K.

K =

(
2πG

T

)1/3 Mp sin i

(Mp +Ms)2/3

We assume Mp +Ms ≈ Ms.

For Ms = 1.14M⊙, T = 3.5 d:

Mp,min ≈ KM2/3
s

(
T

2πG

)1/3

= 6.927× 10−4M⊙

Uncertainty in Mp,min:

∆Mp,min = Mp,min

√(
∆K

K

)2

+

(
2

3

∆Ms

Ms

)2

+

(
1

3

∆T

T

)2

= 0.091× 10−4M⊙

Mp,min = (6.93± 0.09)× 10−4M⊙

(D01.2d) 4Using the value of Mp,min estimated in part (D01.2c), calculate the minimum
value of the semi-major axis of the planet’s orbit, amin, in au and its uncertainty.
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Solution:

amin =

(
T 2G(Ms +Mp sin i)

4π2

)1/3

=

(
T 2G(Ms +Mp,min)

4π2

)1/3

= 0.0471 au

Uncertainty in amin:

∆amin = amin

√(
2

3

∆T

T

)2

+

(
1

3

)2 (∆Ms)
2 + (∆Mp,min)

2

(Ms +Mp,min)2

= 0.0005 au

amin = (0.0471± 0.0005) au

Transit method (without limb darkening)

The schematic diagram of a planet transit (not drawn to scale) is shown below. Initially, we shall
assume the stellar disk to have a uniform average intensity with some intrinsic noise due to the
star itself.

The lightcurve of the normalized intensity, I, as a function of time t is shown in the schematic
diagram of the transit above. The average stellar intensity outside the transit is taken as unity.
The maximum decrease in the intensity is given by ∆ in the normalized light curve. For a uniformly
bright stellar disk, the radius of the planet, Rp, is related to ∆ as(

Rp

Rs

)2

= ∆,

where Rs is the radius of the star.

The total duration of transit (when part or all of the planet covers the stellar disk) is given by
tT, while tF gives the duration when the planet is fully in front of the stellar disk. The “impact
parameter” b is the projected distance between the planet and centre of the stellar disk at the
mid-point of the transit, in units of the stellar radius, Rs.

For a nearly edge-on star-planet orbit, the impact parameter is given by the formula

b =

[
(1−

√
∆)2 − (tF/tT)

2(1 +
√
∆)2

1− (tF/tT)2

]1/2
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(D01.3) 3For the SP system, the stellar radius is known to be Rs = 1.20R⊙, and the transit of
the planet is indeed visible. Using the minimum orbital radius, amin, estimated in part
(D01.2d), find the minimum value, imin, of the inclination angle.

Solution:

bRs = a cos i =⇒ i = cos−1 bRs

a
The minimum value of i corresponds to the maximum value of b(= 1) and the mini-
mum value of a. Therefore,

imin = cos−1

(
bmaxRs

amin

)
= cos−1

(
Rs

amin

)
= cos−1

(
1.20R⊙
0.0471 au

)
imin = 83.20◦

Assuming a stellar disk of uniform brightness, the transit lightcurve would look like as shown
below.

(D01.4) Using the given lightcurve answer the following questions. For your reference the above
lightcurve is also given in the Summary Answersheet.

(D01.4a) 3Estimate the values of tT and tF in days by marking appropriate readings on
the graph.

Solution:
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In the figure of the transit curve, least count on time axis = 0.006 d, and
on the intensity axis = 4× 10−4.
The measurements on the left and right edges of the transit for tT are
−0.072 d and 0.072 d.
The measurements on the left and right edges of the transit for tF are
−0.048 d and 0.048 d.
Therefore,

tT = 0.144 d

tF = 0.096 d

(D01.4b) 2Estimate the mean value of ∆, by marking appropriate readings on the graph
and hence find Rp in units of R⊙.

Solution:
The value of the dip is (0.9860 + 0.9848)/2 = 0.9854

∆ measured from the graph is 1− 0.9854 = 0.0146

∴
Rp

Rs
=

√
∆ = 0.121

=⇒ Rp = 0.121Rs

Rp = 0.145R⊙

(D01.4c) 2Determine the value of i in degrees assuming the orbital radius to be amin.

Solution:

b =

[
(1−

√
∆)2 − (tF/tT)

2(1 +
√
∆)2

1− (tF/tT)2

]1/2

Plugging in values of ∆, tT, and tF, we get b = 0.622

bRs = a cos i
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Putting a = amin,

i = cos−1

(
bRs

amin

)
= cos−1

(
0.622× 1.2R⊙

0.0471 au

)
i = 85.77◦

Introducing limb darkening

So far we have assumed the stellar disk to be uniformly bright. In reality, the observed brightness
of the stellar disk is not uniform due to “limb darkening” — an optical effect where the central
part of the stellar disk appears brighter than the edge, or the “limb”.

The limb darkening effect can be measured by the relative intensity J(θ) ≡ I(θ)
I(0) , where θ is the

angle between the normal to the stellar surface at a point and the line joining the observer to that
point, I(θ) is the observed intensity of the stellar disk at that point (I(0) being the intensity at
the centre of the stellar disk). For a distant observer, θ varies from θ = 0 (centre of the disk) to
θ ≈ 90◦ (edge of the disk).

(D01.5) The table below gives measured J(θ) at a certain wavelength for the Sun. We shall
assume that the same limb darkening profile holds for the star S.

θ J(θ) θ J(θ) θ J(θ) θ J(θ)
0◦ 1.000 20◦ 0.971 40◦ 0.883 70◦ 0.595
10◦ 0.994 25◦ 0.950 50◦ 0.794 80◦ 0.475
15◦ 0.984 30◦ 0.943 60◦ 0.724 90◦ 0.312

The limb darkening profile can be modelled by a quadratic formula:

J(θ) = 1− a1(1− cos θ)− a2(1− cos θ)2,

where a1 and a2 are two constants.

We shall estimate the unknown coefficients a1 and a2 from the given data by making a
plot with suitable variables.

(D01.5a) 2Choose a pair of variables (x1, y1) which are suitable functions of θ and J , that
you want to plot along x and y axes, respectively, to determine a1 and a2. Write
the expressions for x1 and y1.
If you need to define additional variables for additional plots, define them as
(x2, y2), etc.

Solution:

Define x1 = 1− cos θ and y1 =
J − 1

1− cos θ
≡ J − 1

x1
Then, y1 = −a1 − a2x1
In this method a1 and a2 can be determined from the intercept and slope,
respectively, of a best fit straight line to a plot of y1 vs x1.

(D01.5b) 4Tabulate the values necessary for your plots.

Solution:
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θ J(θ) x1 y1
0◦ 1.000 0.000 ×
10◦ 0.994 0.015 −0.395
15◦ 0.984 0.034 −0.470
20◦ 0.971 0.060 −0.481
20◦ 0.970 0.060 −0.497
25◦ 0.950 0.094 −0.534
30◦ 0.943 0.134 −0.425
40◦ 0.883 0.234 −0.500
40◦ 0.890 0.234 −0.470
50◦ 0.794 0.357 −0.577
60◦ 0.724 0.500 −0.552
70◦ 0.595 0.658 −0.616
80◦ 0.475 0.826 −0.635
90◦ 0.312 1.000 −0.688

(D01.5c) 7Plot the newly defined variables on the given graph paper (mark your graph as
“D01.5c”).

Solution:
Plot of y1 vs x1 with straight line fit:

(D01.5d) 7Obtain a1 and a2 from the plot. Uncertainties on the values are not needed.

Solution:
Slope of best fit line = −0.232; Intercept = −0.456
=⇒ a1 = 0.46, a2 = 0.23
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Transit in the presence of limb darkening

Now, we consider planetary transits across a limb darkened stellar disk. In the presence of limb
darkening, which we shall model by the quadratic formula of J(θ) given above, the average observed
intensity of the entire stellar disk (without any transit), ⟨I⟩, is given by:

⟨I⟩ =
(
1− a1

3
− a2

6

)
I(0)

Further, the dip in the light caused by the transiting planet now depends not only on the relative

size of the planet and the star,

(
Rp

Rs

)
, but also on the intensity profile of the stellar disk along

the transit chord, which in turn, depends on the angle of inclination, i.

The schematic diagram below (not drawn to scale) shows the configuration. Note that the brighter
part of the star is shown in a darker shade, while the planet is shown as a black dot.

Here the relation between

(
Rp

Rs

)
and the measured ∆ from the light curve is

∆ =
I(θC)

⟨I⟩

(
Rp

Rs

)2

,

where I(θC) is the intensity of the stellar disk at the midpoint of the transit chord (point C in the
figure above), θC being the angle between the line of sight and the normal to the surface at that
point. From the above it is obvious that for a given star, the same value of ∆ can be produced
by many combinations of the planet size, Rp, and the inclination angle i.

(D01.6) It is possible to uniquely determine both Rp and i by using data from transit lightcurves
at two wavelengths, say, λB (blue) and λR (red). The limb darkening coefficients for
these two wavelengths are given below:

Wavelength a1 a2
λB 0.82 0.05
λR 0.24 0.20

(D01.6a) 2Choose the correct statement among the following that describes the relation
between the maximum depth of the transit (∆) for λB and the inclination angle
(i) of the orbit and tick (✓) it in the Summary Answersheet.
(A) ∆ increases with decreasing i.
(B) ∆ decreases with decreasing i.
(C) ∆ is independent of i.

Solution:
As i decreases, the transit chord moves closer to the limb and the contri-
bution of the midpoint of the transit to the dip in the average brightness
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reduces. Therefore, ∆ decreases with decreasing i.
Correct option: B

(D01.6b) 4The maximum depth of the transit (∆) for the “SP system” was measured to
be 0.0182 and 0.0159 for λB and λR, respectively.
Draw schematic transit light curves for both λB and λR on the given grid and
label the curves by “B” and “R” respectively. Assume that the total transit
duration is same for both wavelengths. The curves need not be to scale, but
should represent the shapes of the light curves correctly.

Solution:
Since the limb darkening effect is stronger for λB, it causes lesser reduction
in the total light at the ingress and egress and more reduction at the transit
centre, than for λR. Therefore, the curves must intersect.

(D01.7) We shall use a graphical method to find the values of Rp and i for the SP system using
measurements of ∆ at λB and λR.

(D01.7a) 6Write an appropriate expression connecting the relevant variables that are to be
plotted. (Hint: You may consider i or b, and Rp among the relevant variables.)

Solution:

∆ =
I(θC)

⟨I⟩

(
Rp

Rs

)2

=⇒
(
Rp

Rs

)2

=
∆⟨I⟩
I(θC)

Here, I(θC) is a function of i. Further, ⟨I⟩ =
(
1− a1

3
− a2

6

)
I(0).
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From the figure,

sin θC =
bRs

Rs
= b =

a cos i

Rs

=⇒ cos θC =
√
1− b2 =

√
1−

(
a cos i

Rs

)2

Therefore,

I(θC) = J(θC)I(0)

=
[
1− a1(1− cos θC)− a2(1− cos θC)

2
]
I(0)

=

[
1− a1

(
1−

√
1− b2

)
− a2

(
1−

√
1− b2

)2
]
I(0)

Thus,(
Rp

Rs

)
=

[
∆⟨I⟩
I(θC)

]1/2
(
Rp

Rs

)
=

 ∆
(
1− a1

3
− a2

6

)
1− a1

(
1−

√
1− b2

)
− a2

(
1−

√
1− b2

)2
1/2

(
Rp

Rs

)
=


∆

(
1− a1

3
− a2

6

)
1− a1

1−

√
1−

(
a cos i

Rs

)2
− a2

1−

√
1−

(
a cos i

Rs

)2
2



1/2

(D01.7b) 5Tabulate the appropriate quantities that are to be plotted.

Solution:
i (◦) b (Rp/Rs)λB

(Rp/Rs)λR

83.5 0.96 0.1842 0.1395
84.0 0.89 0.1547 0.1316
84.5 0.81 0.1419 0.1276
85.0 0.74 0.1341 0.1251
85.5 0.66 0.1287 0.1234
86.0 0.59 0.1248 0.1221
86.5 0.52 0.1218 0.1211
87.0 0.44 0.1196 0.1204
87.5 0.37 0.1178 0.1198
88.0 0.30 0.1165 0.1194
88.5 0.22 0.1155 0.1191
89.0 0.15 0.1149 0.1189
89.5 0.07 0.1145 0.1188
90.0 0.00 0.1143 0.1187

(D01.7c) 7Draw a suitable graph and mark it as “D01.7c”.

Solution:
One can plot the full range (imin ≤ i ≤ 90◦):
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However, it is enough to plot around the point of intersection (can be de-
duced from the table above), to get a better resolution for the coordinates
of the intersection point.

(D01.7d) 4Estimate the values of Rp (in R⊙) and i (in degrees) from the graph.

Solution:

Intersection point of the graphs of

(
Rp

Rs

)
vs i for λB and λR will give the

values of both quantities.
Values deduced from either graph:(

Rp

Rs

)
= 0.1208

=⇒ Rp = 0.1208× 1.2R⊙

Rp = 0.145R⊙
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and

i = 86.75◦

(D01.8) 2Based on the results obtained in this problem, indicate whether the planet P is “ROCKY”
or “GASEOUS” by ticking (✓) the appropriate box in the Summary Answersheet.

Solution:

Estimated mass of the planet P Mp = 6.93× 10−4M⊙ = 1.389× 1027 kg

Estimated radius of the planet P Rp = 0.145R⊙ = 1.009× 108m

∴ Average density of the planet = 320 kgm−3

The average density of the planet P is much less than that of Jupiter (a known

gaseous planet). Hence the planet P is GASEOUS .
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(D02) Predicting arrival times of coronal mass ejections on Earth [60 marks]

The Sun occasionally releases magnetized plasma, termed coronal mass ejections (CMEs), that
originate from the surface of the Sun and propagate outwards. Accurate prediction of their arrival
times at Earth is crucial for understanding and mitigating their potential effects on satellites
orbiting the Earth. In this problem, we aim to predict the arrival times of CMEs by developing
an empirical model, using the data of 10 CMEs. Throughout this problem, the distance between
the Sun’s surface and Earth is taken to be 214R⊙. Further, assume that the Sun is not rotating.
Due to electromagnetic, gravitational and drag forces, CMEs experience a variable acceleration
throughout their propagation. In the first two parts of this problem, we assume that the region
between the Sun and the Earth is vacuum.

CMEs through vacuum

(D02.1) The initial velocity, u, at the solar surface (= 1R⊙), the final velocity, v, upon reaching
Earth, and the time to arrive at Earth after leaving the surface of the Sun (in hours), τ ,
are given for 10 CMEs in the following table.

CME u v τ
Name (km s−1) (km s−1) (h)

CME-A 804 470 74.5

CME-B 247 360 127.5

CME-C 523 396 103.5

CME-D 830 415 71.0

CME-E 665 400 104.5

CME-F 347 350 101.5

CME-G 446 375 99.5

CME-H 155 360 97.0

CME-I 1016 515 67.0

CME-J 683 410 54.0

(D02.1a) 3Calculate the average acceleration, a, for each CME in m s−2.

Solution:
Average acceleration (in m s−2) is given by the following relation,

a = (v − u)× 103/(τ × 3600)

CME u v τ a
Name (km s−1) (km s−1) (h) (m s−2)

CME-A 804 470 74.5 −1.25

CME-B 247 360 127.5 0.246

CME-C 523 396 103.5 −0.341

CME-D 830 415 71.0 −1.62

CME-E 665 400 104.5 −0.704

CME-F 347 350 101.5 0.00821

CME-G 446 375 99.5 −0.198

CME-H 155 360 97.0 0.587

CME-I 1016 515 67.0 −2.08

CME-J 683 410 54.0 −1.40

(D02.1b) 15We assume an empirical model for the acceleration, amodel, of a CME, which
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depends on its initial velocity, u, as amodel = m
(

u
u0

)
+ α where, amodel is

expressed in m s−2, u is expressed in km s−1 and u0 = 1.00× 103 km s−1.
Determine the constants m and α and their associated uncertainties using an
appropriate graph (mark your graph as “D02.1b”).

Solution:

m = (−3.05± 0.09)m s−2

α = (1.08± 0.06)m s−2

Thus, the expression obtained by fitting a straight line to a vs u/u0 is

amodel = −3.05

(
u

u0

)
+ 1.08

(D02.1c) 4For each CME, tabulate amodel in m s−2. Hence calculate the root-mean-square
(rms) deviation of acceleration, δarms, between the calculated accelerations, a,
and the model values, amodel.

Solution:
CME amodel

Name (m s−2)

CME-A −1.37

CME-B 0.327

CME-C −0.515

CME-D −1.45

CME-E −0.948

CME-F 0.0217

CME-G −0.280

CME-H 0.607

CME-I −2.02

CME-J −1.00
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The root mean square (rms) deviation of acceleration is given by

δarms =

√∑10
i=1(amodel,i−ai)2

10

Using this expression we get, δarms= 0.176m s−2

(D02.2) We consider two other CMEs: CME-1 and CME-2, with initial velocities, u = 1044 km s−1

and 273 km s−1, respectively.

(D02.2a) 4Using the empirical model obtained in (D02.1b), calculate the predicted arrival
times at Earth, τ1,m and τ2,m (in hours), for CME-1 and CME-2, respectively.

Solution:
The time of arrival of a CME at the Earth, τm, can be calculated from the
following relation.

s = uτm +
1

2
amodelτ

2
m

However, this would yield two solutions for τm, only one of which will be
for a positive final velocity (acceptable), and the other for a negative final
velocity (not acceptable). Since acceleration is constant, the final velocity
vm at Earth at a distance s = 214R⊙ is given by

vm =
∣∣∣(u2 + 2amodels)

1/2
∣∣∣ = ∣∣∣∣∣

[
u2 + 2

(
m

u

u0
+ α

)
s

]1/2∣∣∣∣∣
Using this velocity, we get the arrival time τ as

τm =
vm − u

amodel
=

vm − u

m u
u0

+ α

Using the given value of u, and the obtained values of m and α, we get
For CME-1:

v1,m = 680.728 km s−1 which gives τ1,m = 48.0 h

For CME-2:

v1,m = 384.941 km s−1 which gives τ2,m = 126 h

(D02.2b) 2The observed arrival times at Earth of CME-1 and CME-2 are 46.0 h and 74.5 h,
respectively. The empirical model is considered to be VALID for a particular
CME if its predicted arrival time is within 20% of its observed arrival time;
otherwise, it is NOT VALID. Indicate the validity of the model for each CME
by ticking (✓) the appropriate box in the Summary Answersheet.

Solution:
The arrival time for CME-1 is τ1,m = 48.0 h,
therefore the percentage error in the arrival time of CME-1 is,
∆τ1,m = 48.0−46.0

46.0 × 100% = 4.35%

Similarly, the arrival time for CME-2 is τ2,m = 126 h,
hence the percentage error is arrival time for CME-2 is,
∆τ2,m = 126−74.5

74.5 × 100% = 69.1%
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VALID NOT VALID

CME-1 ✓
CME-2 ✓

CMEs in presence of solar wind

In reality, the space between the Sun and the Earth is permeated with the solar wind, which exerts
a drag force on CMEs. This drag force can either decelerate or accelerate a CME, depending on
the CME’s velocity relative to that of the solar wind. To account for the solar wind’s influence, we
will use a “drag-only” model for distances Robs(t) ≥ R0, where R0 is the distance beyond which
the drag force becomes the dominant force affecting the CME’s motion.

The distance from the surface of the Sun as determined from the “drag-only” model, RD(t), and
velocity, VD(t), of a CME in this model is given by

RD(t) =
S

γ
ln [1 + Sγ(V0 − Vs)(t− t0)] + Vs(t− t0) +R0

VD(t) =
V0 − Vs

1 + Sγ(V0 − Vs)(t− t0)
+ Vs

where, γ = 2× 10−8 km−1, Vs is the constant speed of the solar wind, R0 and V0 are the distance
and velocity, respectively, at time t0, and S is the sign factor. S = 1 if V0 > Vs; S = −1 if V0 ≤ Vs.

(D02.3) The tables below show the observed radial distance from the surface of the Sun, Robs(t) (measured
in R⊙), as a function of time, t (in hours), for two CMEs: CME-3 and CME-4. The last data
point in each table (D5 and P8, respectively) corresponds to the arrival time of the respective
CME at Earth. For this part, assume Vs = 330 km s−1.

CME-3

Data point t (in h) Robs(t) (in R⊙)

D1 0.200 6.36

D2 0.480 7.99

D3 1.22 11.99

D4 1.49 13.51

D5 58.05 214

CME-4

Data point t (in h) Robs(t) (inR⊙)

P1 1.00 4.00

P2 3.00 6.00

P3 4.00 9.00

P4 5.00 11.0

P5 21.0 43.0

P6 50.0 100

P7 85.0 170

P8 111 214

We shall evaluate if the “drag-only” model satisfactorily predicts the arrival times of
these CMEs. To use this model an appropriate choice of t0, and corresponding R0 and
V0 needs to be made.

(D02.3a) 6For CME-3, take the following two cases:
(C1) t0 is taken as the midpoint of the interval D1 – D2
(C2) t0 is taken as the midpoint of the interval D3 – D4
Assume the velocity remains constant in each specific interval D1–D2 and
D3–D4, but may differ between the two intervals.
Using t0, R0, and V0, calculate the difference between the observed and the
predicted radial distance, δRD ≡ Robs(t)−RD(t) in units of R⊙ at t = 58.05 h,
for each of the two cases.

Solution:
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Inserting, R0, t0, V0, and Vs in the given expression

RD(t) =
S

γ
ln [1 + Sγ(V0 − Vs)(t− t0)] + Vs(t− t0) +R0,

we get
Case C1:

R0 =
7.99 + 6.36

2
R0 = 7.18R⊙

t0 =
0.20 + 0.48

2
= 0.340 h

V0 =
(7.99− 6.36)× 695700

(0.48− 0.20)× 3600

V0 = 1.12× 103 km s−1

we get, RD = 210.61R⊙ at t = 58.05 h.
Thus, δRD = 214− 210.61 = 3.39R⊙ .

Case C2:

R0 =
11.99 + 13.51

2
= 12.8R⊙

t0 =
1.22 + 1.49

2
= 1.36 h

V0 =
(13.51− 11.99)× 695700

(1.49− 1.22)× 3600

V0 = 1.09× 103 km s−1

Using the expression above, RD = 210.86R⊙ at t=58.05.
Thus, δRD = 214− 210.86 = 3.14R⊙ .

(D02.3b) 4Evaluate RD(t) at points, P5, P6, P7, and P8 between the Sun and the Earth for
CME-4 for the following two cases adopting the procedure similar to (D02.3a):
(C3) t0 is taken as the midpoint of the interval P1 – P2
(C4) t0 is taken as the midpoint of the interval P3 – P4

Solution:
Case C3:

R0 =
6 + 4

2
= 5R⊙

t0 =
3 + 1

2
= 2h

V0 =
(6− 4)× 695700

(3− 1)× 3600
= 193 km s−1

Case C4:

R0 =
11 + 9

2
= 10R⊙

t0 =
5 + 4

2
= 4.5 h
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V0 =
(11− 9)× 695700

(5− 4)× 3600
= 386 km s−1

Data Point t (in h)
C3 C4

RD(t) (in R⊙) RD(t) (in R⊙)

P5 21.0 25.1 42.8

P6 50.0 59.1 99.9

P7 85.0 104 168

P8 111 139 218

(D02.3c) 10Plot RD(t) (in R⊙) vs t (in hours) for the two cases, C3 and C4, for CME-4
at points, P5, P6, P7, and P8 (mark your graph as “D02.3c”). On the same
graph, draw smooth curves of RD(t) for the above mentioned two cases. For
this part, take the range of x axis from 0 to 180 h.

Solution:
The plot below shows the data points of CME-4 and smooth variation of
RD extrapolated up to 220R⊙.
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(D02.3d) 4Using the graph, estimate the absolute difference, |δτ | between the actual arrival
time of CME-4 at the Earth and its time of arrival predicted by the drag-only
model, for each of the cases C3 and C4.

Solution:
The arrival time of CME at Earth (214R⊙) can be obtained by estimating
the point of intersection between RD = 214R⊙ = constant and two smooth
curves.
The points of intersection are 167 h and 109 h for the cases C3 and C4, re-
spectively.
Thus, absolute time differences are:

C3: |δτ |= 56h

and
C4: |δτ |= 2h .

(D02.3e) 1Indicate whether the following statement is TRUE or FALSE by ticking (✓) the



Data Analysis Examination
Page 22 of 22

appropriate box in the Summary Answersheet (no written justification needed):
“The drag forces exerted by the solar wind on CMEs become dominant for
CME-3 at an earlier time compared to CME-4.”

Solution:
The statement is TRUE .
In the scenario of CME-3, the “drag-only” model predicts the arrival dis-
tance accurately when RD is computed using the initial velocity, V0 and
initial distance, R0 at 0.20 h and beyond.
While for CME-4, the “drag-only” model start accurately predicting the
arrival times of CME-4 when RD is calculated using V0 and R0 at 4 h after
the launch of the CME.

(D02.4) 7Consider drag as the dominant force acting on 10 CMEs in part D02.1. Assume that the
“drag-only” model is applicable from the surface of the Sun (R0 = 1R⊙) and beyond,
for all CMEs. Estimate and tabulate the solar wind speed Vs in km s−1 for each CME.
Further, estimate the average solar wind speed Vs, avg for all 10 CMEs.

Solution:

VD(t) =
V0 − Vs

1 + Sγ(V0 − Vs)(t− t0)
+ Vs

v =
u− Vs

1 + Sγ(u− Vs)τ
+ Vs.

Taking, S = 1 if v < u, else S = −1 The above expression is quadratic equation,
thus, we get two values of Vs. If v < u, choose the solution with Vs < u. If v > u,
choose the solution with Vs > u.
Calculating Vs using the above conditions for all ten CMEs.

CME u v τ Vs

Name (km s−1) (km s−1) (h) (km s−1)

CME-A 804 470 74.5 337

CME-B 247 360 127.5 428

CME-C 523 396 103.5 314

CME-D 830 415 71.0 270

CME-E 665 400 104.5 303

CME-F 347 350 101.5 369

CME-G 446 375 99.5 305

CME-H 155 360 97.0 457

CME-I 1016 515 67.0 357

CME-J 683 410 54.0 248

Taking the average of the solar wind speed, Vs, for each case, we get

Vs, avg=339 km s−1


